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We derive a method for the reconstruction of non-stationary signals with structured phase functions using only a small number
of signal measurements. Our approach employs generalized shift operators as well as the generalized Prony method. Our goal
is to reconstruct a variety of sparse signal models using a small number of signal measurements.
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1 Introduction

We consider the problem of recovering structured functions of the form

M
= chH(a:)eaJG(z) €))
j=1

where G': [a,b] — R is a known continuous and strictly monotone phase function and H: R — C is a known continuous
function that has no zeros in [a, b]. Signals of the form (1) are called non-stationary if H(x) is not a constant function and/or
the phase function G(x) is not of the form mx + d with m,d € R. For the special case H(z) = 1 and G(z) = « this
reconstruction problem can be solved with the Prony method [3] thereby using only 20/ functional values.

2 Generalized Shift Operators and the Prony method

The generalized Prony method in [1, 2, 4] enables us to reconstruct sparse expansions of eigenfunctions of a linear operator.
Therefore, we try to find a linear shift operator possessing eigenfunctions of the form H (x) e®s G(z),
For h € R\ {0}, we consider the following generalized shift operator

H(x)
H (G (G(z) + )

Theorem 2.1 Let S q, 1 be of the form (2) with H and G as in (1). Then Sg,g,n possesses eigenfunctions of the form
H(x) e“G(®) corresponding to the eigenvalue " for a € R.

Su.anf(z) = f (G_l (G(z) + h)) . )

Proof. Employing the definition of S ¢ 5 yields

aG(- H(l‘)
Suon (HO ) @) = e @ T
= H(x) e(G(x)+h) _ eah’H(aj) eaG(m),

H (G71 (G(CC) + h)) eaG(Gfl(G(x)—O—h))

ie., H(x) e*%(#) is an eigenfunction of SH,a,n corresponding to the eigenvalue eh, O

Theorem 2.2 Let f be of the form (1). Then f can be uniquely reconstructed from the function values f (G=" (G(zo) + kh))
fork=0,...,2M — 1, where zo € Rand h € R\ {0} are chosen such that G(xo) + kh is in the domain of G™1.

Proof. We define the Prony polynomial P(z) := Hju (2 — ey = chw:o pr2*. In a first step, we want to recover this

polynomial from the given function values. We use Theorem 2.1 and observe form =0,..., M — 1,

M M

k+m k a:G(x k+m .Gz
St o = oS Soesttans o0 ) =3 S s (o o)
k=0 j=1 j=

M M
=3y 3 )3 ) () o,
j=1 = j=1
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Exploiting that pp; = 1, and that S];I,G,hf = Su.c.knf, we derive the linear system Hp = —fj; with the vector p =
(po, ... par—1)7T of coefficients of the Prony polynomial and

M-1 M—1

H = (dom F(G(Glzo) + (k+m)0), o —or s = (diyar F(GTH(Gwo) + (k+ M)R)),

where d; := %, £=0,...,2M — 1 can be precomputed. The Hankel matrix H admits the factorization

H=— H(.’EQ) V, diag(ClealG(x0)7 L 7c]\/[eonG(am)) V}:

with the Vandermonde matrix V = (e% hk)ﬁigljfl Since H(zo) # 0 and V) has full rank, we conclude that H is

invertible. Having found the coefficients pj, of the Prony polynomial, we can compute its roots e, j = 1,..., M, and then
determine the parameters c; by solving the linear system

1
H (G (Glao) + hk))

M
F(GTHG (o) + hk)) =D ¢jehF el =0, 2M — 1.
Jj=1

The idea can be extended even further using symmetric generalized shift operators.

Corollary 2.3 Let f(z) = Z]]Vil ¢; cos(ajaP + f3;) with given odd integer p > 0, and unknown coefficients c; € R\ {0},
B; € [0,7]\ {3}, and pairwise different a; € [0, K) for some K > 0 forall j = 1,..., M. Then o, B, ¢j, j = 1,..., M,

can be reconstructed from f(+/kh), k=0,...,2M — 1, where 0 < h < .

Proof. For adetailed proof for the recovery of the o;,j = 1, ..., M see [2]. For the recovery of the ¢; and 5; we use that
cos (x +y) — cos (x — y) = —2sin () sin (y) and that V' = (sin (ajlh))lhio_}ivl[ is invertible for a; and h for j =1,..., M
as above. O

3 Numerical Example

We illustrate the recovery method in Corollary 2.3 with a numerical example. Let f(z) = Zjle ¢; cos(ajzP + B;) with
M =2,p=3,a; =2.5305, ag = 1.8118, ¢; = 0.9146, co = 1.1997 and 5; = 0.5378, 52 = 2.0592. We use the 7 sample
values f(+V/k) fork =0,...,3.

The reconstruction errors are

max|c; — &| = 1.998 - 10712, max |a — ;| = 1.33- 1071, max |B; — ;| = 1.44 - 1071,
J J J

Fig. 1: The blue line represents the
original signal. The reconstructed sig-
v nal is plotted in red.The black dots indi-
- ' cate the used signal values of f.
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