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Zusammenfassung
Das Standardmodell der Teilchenphysik sagt voraus, dass die W Bosonen, die aus einem
Higgs Zerfall stammen, quantenverschränkt sind. Für die Untersuchung der Verschrän-
kung ist eine präzise Rekonstruktion quantensensitiver Observablen erforderlich, um die
Anwendung der Quantentomographie zu ermöglichen. Es werden dileptonische Endzustän-
de mit einem Elektron und einem Muon betrachtet, um den Zerfall mit hoher Präzision zu
analysieren. Die in diesem Endzustand auftretenden Neutrinos werden nicht vom Detektor
gemessen und müssen rekonstruiert werden.

Diese Arbeit konzentriert sich auf die Rekonstruktion der Neutrinos in diesem Prozess.
Drei Rekonstruktionsalgorithmen werden eingesetzt und hinsichtlich ihrer Genauigkeit
verglichen. Unter Berücksichtigung der für die Rekonstruktion erforderlichen Randbedin-
gungen und Annahmen zeigen alle Algorithmen Potenzial. Besonders vielversprechend
ist dabei der Ansatz, über einen Wertebereich von η und Mνν zu iterieren. Zur Tren-
nung von Signal- und Untergrundprozessen wird ein mehrlagiges neuronales Netzwerk für
Mehrklassenklassifikation eingesetzt.

Abstract
The Standard Model of Particle Physics predicts that the W bosons originating from
a Higgs decay are entangled. To study the entanglement, a precise reconstruction of
quantum-sensitive observables towards an application of quantum tomography must be
enabled. A dileptonic final state including one electron and one muon is considered, to
analyse the decay with high precision. The neutrinos present in this final state are not
measured by the detector and must be reconstructed.

This work focuses on the reconstruction of the neutrinos in this process. Three recon-
struction algorithms are employed and compared regarding their accuracy. Taking into
account the number of constraints and assumptions necessary for the reconstruction, all
algorithms show potential. Especially the approach of scanning over a range of values for
η and Mνν is promising. For the separation of signal and background processes, a deep
neural network designed for multiclass classification is employed.
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1. Introduction

One hundred years ago, Göttingen marked the birthplace of quantum mechanics as Born,
Heisenberg and Jordan published their paper "Zur Quantenmechanik. II." [1]. Quantum
mechanics describes many phenomena that appear to be in conflict with our everyday
experiences. One of them is quantum entanglement. This was first introduced in the
EPR paper in 1935, where Einstein, Podolsky, and Rosen argue that quantum mechanics
must be incomplete, as such a distant influence contradicts the principle of locality [2]. In
1964, in his paper "On the Einstein-Podolsky-Rosen paradox" John S. Bell introduced his
famous inequality, providing a criterion to test whether quantum mechanical phenomena
are consistent with a local and realistic theory [3]. Since then, numerous Bell tests have
been successfully conducted to verify whether quantum mechanical phenomena indeed
violate the Bell inequalities [4–6].

Recently, efforts have begun to investigate quantum entanglement in high-energy physics
[7]. This opens the possibility to test quantum mechanics at the highest energy scales
and with fermions and bosons. It has been proposed that quantum entanglement could
be measured in the H → WW ∗ decay [8]. This thesis explores various analysis strategies
aimed at studying quantum signatures for this process, using the experimental collisions
provided by the LHC during its Run 2 and taken with the ATLAS experiment. To study
the process with high precision, leptonic final states are considered. The primary chal-
lenge lies in accurately reconstructing the dineutrino system, as neutrinos are not directly
measured by the ATLAS detector. To suppress background contributions, machine learn-
ing algorithms are employed. The goal is to establish a foundation for the reconstruction
of observables towards an application of quantum tomography and, eventually, the study
of Bell inequalities in the process H → WW ∗ → lνlν.

This thesis first presents the theoretical and experimental foundations of the topic. The
event generation as well as object definition and preselection are described in Chapters 4
and 5. The following chapter explains and analyses the event classification using machine
learning techniques. Chapter 7 introduces three algorithms to reconstruct the neutrino
system and compares their performance. Finally, the main results are summarised and an
outlook for further analyses towards probing quantum signatures in this process is given.
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2. The Standard Model of Particle
Physics

All known particles are described in the Standard Model of Particle Physics [9]. An
overview of these particles is shown in Figure 2.1. The Standard Model also describes three
of the known fundamental forces, which are the strong, the weak and the electromagnetic
force. Gravity is excluded. The particles are divided into two groups: fermions having
half-integer spin and bosons having integer spin. There are twelve fermions: six leptons
and six quarks.

The three charged leptons, electron (e), muon (µ), and tau (τ), have an electromagnetic
charge of −1. They interact electromagnetically, the corresponding exchange particle is
the photon which carries no electric charge and is massless. The leptons are divided into
three generations, each containing one electrically charged and one electrically neutral
lepton. The mass of the charged leptons rises with the generation. For each charged
lepton there is a corresponding neutrino with which it forms a weak isospin doublet. The
neutrinos carry no charge and the upper bound of their mass is very small.

The six quarks are also divided into three generation. Each generation contains an
up-type quark (up, charm, top) and a down-type quark (down, strange, bottom). For
each generation they form a weak isospin doublet. The up-type quarks carry a charge of
+2

3e, the down-type quarks carry a charge of −1
3e. Similar to the leptons, the mass of

the quarks rises with the generation. The top quark with a mass of mt ≈ 172.6 GeV is
the heaviest known elementary particle [9]. Quarks also carry a colour charge which can
be blue, red or green. Antiquarks carry the corresponding anticolour, antiblue, antired
or antigreen. Since quarks carry colour charge they engage in the strong interaction.
The force carrier, the gluon, carries colour and anticolour. Since quarks carry an electric
charge they also can interact electromagnetically.

The third force described by the Standard Model is the weak force. Its force carriers are
the massive, electrically neutral Z boson, the electrically positively charged W+ and the
electrically negatively charged W− boson. The W bosons are the exchange particles for
the charged-current interaction. Only left-handed particles and right-handed antiparticles
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2. The Standard Model of Particle Physics

Figure 2.1.: The figure shows the elementary particles described by the Standard Model.
The particles’ masses, spin and charge are shown [9].

take part in this interaction. An up-type lepton interacts with its corresponding down-type
lepton and vice versa. For quarks, the interaction partners can be any up- and down-type
quark. The probability for the quarks of their respective generations to interact with each
other are determined in the Cabibbo-Kobayashi-Maskawa matrix (CKM matrix) [10].

At very high energies the electromagnetic and the weak force merge into a single force.
Therefore they are unified in the electroweak theory. This leads to a symmetry breaking
because photons are massless whereas the weak exchange particles are massive. This is
caused by the Higgs mechanism [11]. The Standard Model includes the Higgs field which
is a scalar field and via the Higgs mechanism gives massive fermions and bosons its mass.
The Higgs boson is a quantum excitation of this field. It is a scalar boson, has spin 0 and
no charge.
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2.1. The Decay H → WW ∗ → lνlν

Table 2.1.: The cross sections for several Higgs boson production channels at a centre-
of-mass energy of

√
s = 13 TeV are listed [9].

process ggF VBF WH ZH tt̄H total
cross section (in pb) 48.6+5.6%

−7.4% 3.78+2.1%
−2.1% 1.37+2.0%

−2.0% 0.88+4.1%
−3.5% 0.50+6.8%

−9.9% 55.1+5%
−7%

2.1. The Decay H → WW ∗ → lνlν

For this thesis, the decay of interest is H → WW ∗ → lνlν. In the following subsections,
Higgs boson production at a centre-of-mass energy of

√
s = 13 TeV and the considered

decay into two W bosons are discussed. Furthermore, the considered W boson decays are
explained.

2.1.1. Higgs Production and Decay

There are several ways a Higgs boson can be produced. The most relevant production
channels for a centre-of-mass energy of

√
s = 13 TeV are discussed in the following. The

most common one is gluon fusion (ggF). Two gluons exchange a virtual top quark. A top
loop is formed and eventually a Higgs boson is produced. The process with the second
largest cross section is vector boson fusion. Two (anti-)quarks exchange a W or Z boson
which radiates a Higgs boson. Less relevant production channels are WH, ZH and tt̄H
associated mechanisms. The respective production cross sections are listed in Table 2.1.

The Higgs decay under consideration is the H → WW ∗ decay. Its branching ratio is
25.7(2.5)% [9]. Given that the Higgs has a mass of mH ≈ 125 GeV and the W boson
has a mass of mW ≈ 80 GeV, one of the W bosons is off-shell [9]. In the following, the
off-shell W boson will be referred to as W ∗.

2.1.2. W boson Decays

W bosons can decay hadronically and leptonically. The considered decay is the leptonic
channel because leptons can be detected with a higher sensitivity. The W boson decays
into a lepton ℓ and its corresponding neutrino νl. The branching ration for each lepton
neutrino pair is ∼ 10% [9]. Tau leptons have a very short mean lifetime of ∼ 290 · 10−15 s,
and therefore do not reach the detector [9]. Instead, its decay products, primarily other
leptons or π-mesons, are detected.
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2. The Standard Model of Particle Physics

2.1.3. Helicity Configurations of the Decay

The Higgs boson is a scalar particle with spin zero [9]. In its rest frame, it possesses
no orbital angular momentum. Consequently, due to the conservation of total angular
momentum, the spins Z-component of the resulting W bosons, projected along a common
axis, must sum to zero. In this frame, the W bosons are emitted back-to-back as a
result of momentum conservation. Therefore, their helicities, that is the projection of
their spins onto their respective directions of motion, has o be equal and can be explored.
As spin 1 particles, W bosons can have helicity values of +1, 0, or -1. The helicity
combinations consistent with angular momentum conservation are (+1, +1) and (-1, -1),
corresponding to transverse polarisation and (0, 0), which corresponds to longitudinal
polarisation. These combinations are allowed because the W bosons move in opposite
directions in the Higgs rest frame.

In the weak decay W → ℓν, the W boson couples exclusively to left-handed neutrinos
and right-handed antineutrinos. Since leptons are spin 1

2 particles, their spins must align
appropriately with the W boson’s polarisation to conserve angular momentum. In the case
of transverse polarisation, the lepton and neutrino are preferentially emitted along the W
boson’s direction of motion, ensuring angular momentum conservation. This results in
the two neutrinos in the decay H → WW ∗ → lνlν being emitted collinearly. In contrast,
when the W boson is longitudinally polarised, no particular emission direction is favoured,
as the helicity projection is zero and does not impose directional constraints.

2.2. Quantum Entanglement

The Standard Model describes elementary particles as quantum mechanical entities. A
phenomenon that occurs for these particles is quantum entanglement. A quantum state
ψA ∈ HA of a system A can be written as

ψA =
∑

i

aiiA. (2.1)

The iA form a basis of the Hilbert space HA, the ai are the corresponding coefficients. The
Hilbert space of a combination of two systems A and B is the tensor product HA ⊗ HB.
A state ψAB in the combined Hilbert space can be written as

ψAB =
∑
i,j

cijiAjB, (2.2)
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2.2. Quantum Entanglement

where jB is a basis of HB. If the coefficients cij factorize to coefficients for system A and
B as cij = aibj the state is separable. If such a factorisation does not exist the states
ψA and ψB are entangled. This implies that their behaviour is intrinsically correlated,
despite their spatial separation, and they can no longer be described independently. The
considered signature of correlation is the polarisation of two particles.

The entanglement of a combined system can also be inferred from its spin density
matrix. The process of determining the spin density matrix from quantum-sensitive ob-
servables is called quantum tomography. It requires the reconstruction of the system’s
kinematic or state variables from the measured data, in order to compute the observables
needed to infer the density matrix.
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3. Experimental Setup

To study the elementary particles high energies are needed. Particle accelerators are used
to collide particles at high centre-of-mass energies. The decay products of these collisions
are detected in particle detectors.

3.1. Large Hadron Collider

The Large Hadron Collider (LHC) [12] at Cern near Geneva is a synchrotron that ac-
celerates protons and ions. Electromagnetic cavities and superconducting magnets are
arranged in a circular shape with a circumference of approximately 27 km. In Run 2
the two colliding proton beams had a centre-of-mass energy of

√
s = 13 TeV and bunch

spacing of 25 ns [12]. The integrated luminosity for Run 2 is L = 140.1(1.2) fb−1 [13].

3.2. ATLAS Experiment

ATLAS is a multi-purpose particle detector at the LHC. It is barrel-shaped and consists
of multiple detector layers with different purposes. An overview of the detector and its
sub-detectors is shown in Figure 3.1.

The ATLAS Detector uses a right-handed cartesian coordinate system. Its origin lies
in the interaction point. The x-axis points to the centre of the LHC, the y-axis points
upwards and the z-axis is tangential to the beam. In the plane transversal to the beam
polar coordinates r and φ are used. Furthermore the polar angle θ describes the angle
between a decay particle’s track and the z-axis. The pseudo-rapidity is defined as

η = − ln tan θ2 . (3.1)

The angular separation of two particles is defined as

∆R =
√

(∆η)2 + (∆φ)2. (3.2)

The detector and its sub-detector layers are symmetrically arranged around the beam.

9



3. Experimental Setup

The Inner Detector (ID) consists of three sub-detectors. The Pixel Detector consists
of silicon pixel layers and is located closest to the interaction point. It is followed by the
Semi-Conductor Tracker (SCT) which contains of many silicon microstrip layers. The
outermost sub-detector is the Transition Radiation Tracker (TRT) built of drift tubes.
The ID is located in a solenoidal magnetic field of 2 T which causes charged particles to
curve. It measures the particle’s momentum and primary and secondary vertices [14].

The ID is surrounded by the electromagnetic calorimeter that measures the energy of
electrons, positrons and photons. It is a sampling calorimeter and consists of layers of
lead (passive absorber) and liquid argon (active detector) [14]. In the absorber the par-
ticles form electromagnetic showers. The main processes are Bremsstrahlung and pair
production. Pair production refers to the process in which a single photon generates
an electron-positron pair, while Bremsstrahlung occurs when an electron or positron is
deflected by another charged particle, emitting a photon. Those secondary particles pro-
duce even more particles by the same mechanisms until the particles’ energy is too low.
The energy of the shower particles is measured in the active layer of the detector. Even
though muons and tau leptons interact electromagnetically they are not detected in the
electromagnetic calorimeter. Tau leptons have a mean lifetime of 290.3(0.5) · 10−15 s and,
compared to the electron, a much larger mass of approximately mτ ≈ 1.8 GeV [9]. There-
fore they do not reach the detector and Bremsstrahlung does not occur. Muons have a
much higher lifetime but also a mass that is 200 times heavier than electrons. Hence their
energy loss through Bremsstrahlung is negligible.

The next layer is the hadronic calorimeter. It also is a sampling calorimeter which uses
steal as absorber and plastic scintillators as active layer [14]. The energy of hadronic
decay products is measured.

The only particles beside neutrinos that have not been stopped yet are muons. They
are detected in the outermost detector, the Muon Spectrometer. It is located in a system
of three superconducting air-core toroids which bend the muon tracks. Several drift and
multiwire proportional chambers then measure the momentum of the muons [14].

The only particles that do not interact with the detector are neutrinos. Since the
colliding particles have no transversal momentum neutrinos can be reconstructed with
the help of missing transverse momentum or energy Emiss

t .
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3.2. ATLAS Experiment

Figure 3.1.: The picture shows a schematic overview of the ATLAS detector and its
sub-detectors, © Cern.
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4. Event Generation

Particle Physics aims to describe and understand the fundamental properties and interac-
tions of elementary particles. To develop strategies and algorithms to precisely reconstruct
the measured data, which is then compared with theoretical predictions, simulations are
employed. They enable a direct comparison between reconstructed observables and their
corresponding values at truth-level. To achieve high statistical precision, a large number
of collisions is simulated. In particle physics, such a collision is referred to as an event.
First, the event itself is generated using Monte Carlo event generators. Then, the resulting
measurement of the detector is simulated.

4.1. Monte Carlo Event Generation

First, the event is simulated at the parton level. This stage describes the hard scat-
tering of the collision, excluding showering processes and further decays. The simulated
events follow the probability distributions predicted by the Standard Model. Monte Carlo
event generators are used to randomly generate individual events according to these dis-
tributions. The particles which reach the detector are not necessarily the same as those
produced in the initial hard scattering process. Therefore, the event is simulated at the
particle level, which includes parton showering and further particle decays. Parton show-
ering describes the emission of gluons and quarks from the initial partons as well as from
their decay products. These partons then undergo hadronisation, a process by which they
form colour-neutral hadrons. Since hadronisation cannot be calculated using perturbative
methods, phenomenological models such as the Lund-String model [15] or cluster models
[16] are employed to describe this process.

The Monte Carlo generators used in this analysis are Powheg [17], Sherpa [18] and
Pythia [19]. The considered samples and their respective event generators are listed in
Table A.1 in the appendix.

13



4. Event Generation

4.2. Detector Simulation

To access the information at the particle level experimentally, particle detectors are used.
Their measurement accuracy is limited by factors such as resolution, acceptance and trig-
ger efficiency. To account for these detector effects, the measurement process is simulated
to obtain the reconstructed level of an event. The ATLAS detector response is simulated
using Geant4 [20], which models the interaction of particle-level information with the
detector and produces the corresponding detector signals.

14



5. Object Definition and
Preselection

In order to reconstruct an event, physical objects have to be derived from the signals mea-
sured by the detector. The object definition defines, which measured signals correspond
to which physical object, and is explained in Section 5.1. To study the process of interest,
the events are separated into signal and background events. These preselection criteria
are defined in Section 5.2.

5.1. Object Definition

For this analysis, the objects of interest are the decay products of the process H →
WW ∗ → ℓ+νℓ−ν. The measurable decay products of this process are electrons and muons;
decays into tau leptons are not considered as signal processes. The neutrinos produced in
the W boson decays are not directly detected, instead their transverse energy is inferred
from the missing transverse energy Emiss

t . Furthermore, jets are taken into account, since
they may be emitted prior to Higgs boson production and the Higgs recoils against them,
resulting in different kinematics.

Electrons are reconstructed from their signals in the electromagnetic calorimeter and
the associated tracks in the Inner Detector. Due to detector acceptance, they are required
to have a transverse momentum of pt ≥ 15 GeV and a pseudo-rapidity within |η| ≤ 2.47.
To reduce the contribution from non-prompt electrons, electrons passing a tight working
point are used for this analysis. A tight likelihood-based identification criterion and a
tight isolation requirement using a variable isolation radius are applied [21, 22].

Muons are identified from their signals in the Muon Spectrometer. Their trajectories
also are determined from their tracks in the Inner Detector. The minimum transverse
momentum of an object to be considered as a muon is pt ≥ 15 GeV, their pseudo-rapidity
is required to be within |η| ≤ 2.5. Muons are required to pass a medium working point,
which is defined by a tight isolation criterion using a variable isolation radius [23].

Jets are reconstructed using the anti-kt algorithm [24] with a radius parameter R = 0.4.

15



5. Object Definition and Preselection

They have to have a transverse momentum of pt ≥ 25 GeV and a pseudo-rapidity of
|η| ≤ 2.5. Jets must satisfy the ’jet vertex tagger’ requirements [25]. To identify bottom
jets, the GN2v01 algorithm [26] is used. It is based on a graph neural network and tags
b-jets at different efficiencies. For example, at the 90% working point, 90% of all true
b-jets are tagged as b-jets.

Missing transverse energy is calculated considering all the objects mentioned above.

5.2. Preselection

The preselection aims to reduce background events and separate them from the signal
events. It is based on reference [27]. The signal process is HWW ∗, where the Higgs
boson is produced either via gluon fusion (HWWggf ) or vector boson fusion (HWWvbf ).
The main background processes in this analysis are top-quark pair production (tt) and
diboson production. Dedicated control regions are defined for these processes. For the
diboson background, production via electroweak processes and via the strong force are
included. Furthermore, Wt, V+jets, Zττ , V γ+jets and other Higgs processes (Other H)
are considered. V denotes a W or Z boson. Fake-lepton backgrounds originating from
heavy-flavour (FHF), light-flavour (FLF), and other sources (FOther) are also included.

Cuts are imposed on the properties of each event to assign it to a region. For the
signal region, the leading and subleading lepton must have a transverse momentum of
pt ≥ 25 GeV each. The final state of the signal process contains two neutrinos, therefore
a missing transverse energy of Emiss

t > 20 GeV is required. To suppress tt background,
events containing any b-tagged jets using a working point with 90% efficiency are rejected,
and the dilepton mass must be less than 100 GeV. Furthermore, it must be greater than
10 GeV, to reduce low-mass meson resonances and Drell-Yan background. To exclude Z
boson processes, which emit two charged leptons of the same flavour, exactly one electron
and one muon are required. As mentioned before, the kinematic properties of the signal
process differ depending on whether the Higgs boson is at rest or boosted by jets that were
emitted before its production. Therefore, three signal regions are defined, accounting for
the jet multiplicity. The regions are SR0j, SR1j and SR2j, having no jets, exactly one and
two or more jets. The cuts defining the signal regions at the preselection level are listed
in Table D.1.

The diboson background includes WZ, ZZ and WW events, which do not originate
from a Higgs decay. Since the diboson background leads to final states very similar to those
of the signal, the same preselection is applied to define the control region (CRDiboson).
To differentiate between this background and the signal, machine learning methods are

16



5.2. Preselection

Table 5.1.: The table lists the preselection criteria used for the signal regions.
Preselection Criteria SR0j SR1j SR2j
Jet multiplicity Njets = 0 Njets = 1 Njets ≥ 2
Missing transverse energy Emiss

t > 20 GeV
b-jet multiplicity Nb-jet, 90% = 0
Leading lepton pT pt ≥ 25 GeV
Subleading lepton pT pt ≥ 25 GeV
Dilepton mass 10 GeV < mℓℓ < 100 GeV
Number of electrons Ne = 1
Number of muons Nµ = 1

Table 5.2.: The table shows the preselection criteria used for the control regions.
Preselection Criteria CRDiboson CRtt
Missing transverse energy Emiss

t > 20 GeV
b-jet multiplicity Nb-jet, 90% = 0 Nb-jet, 65% ≥ 2
Leading lepton pT pt ≥ 25 GeV
Subleading lepton pT pt ≥ 25 GeV
Dilepton mass 10 GeV < mℓℓ < 100 GeV
Number of electrons Ne = 1
Number of muons Nµ = 1
Jet multiplicity Njets ≥ 2

employed to define an additional selection. This is described in the following section.
To define the tt control region (CRtt), two or more b-jets with an efficiency of 65% are
required, as top quarks always decay into a bottom quark and a W boson. For the leptons,
the same preselection criteria as those used in the signal region are applied. In addition
to the preselection, machine learning methods are also used to improve the discrimination
of the tt background. The preselection criteria of the control regions are shown in Table
D.2.

17





6. Event Classification

To separate signal events from background events, machine learning techniques are em-
ployed. A fully connected deep neural network (DNN) is used for multiclass classification.
Based on the classification scores, cuts are applied to define signal and control regions.
The basics of DNNs and the used structure are explained below.

6.1. Deep Neural Networks

A DNN consists of an input layer, an output layer and several hidden layers inbetween.
Each hidden layer consists of nodes that determine the capacity of the network. The
number of nodes in a hidden layer is referred to as the hidden dimension, denoted by
dhid. The transformation from one layer of dimension di to the next of dimension di+1 is
performed by applying a linear mapping followed by a non-linear activation function. For
the linear transformation, a weight matrix W of dimension di+1 × di and a bias vector
b⃗ of dimension di+1 are randomly initialised. The output of the linear transformation is
then passed through a non-linear activation function σ. If x⃗ is the output of the previous
layer, the input for the next layer is calculated as

y⃗ = σ(Wx⃗+ b⃗). (6.1)

After the input has propagated through all layers of the network once, the output is
compared to the true labels and the loss is computed via a loss function. The loss
quantifies how well the DNN is able to correctly classify the input. In order to train
a reliable and accurate DNN model, the goal is to minimise the loss. To achieve this, the
weight matrices and biases are optimised after every epoch. Let θ denote the vector of
all trainable parameters (weights and biases) of the model. To determine the influence of
every model parameter on the loss, backpropagation is used to calculate the gradient of
the loss with respect to all parameters. A gradient descent algorithm is used to compute
the optimised model parameters, which give a minimum in the loss. They are stored in
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6. Event Classification

θ′. A basic algorithm to update the parameters is

θ′ = θ − η∇θL, (6.2)

where η is the learning rate. If a model is trained for too long, it specialises on the
training data and is no longer able to generalise to unseen data. This phenomenon is called
overfitting. To prevent this, the dataset is often split into a training set and a validation
set. The model is trained on the training set, and after every epoch, the validation
loss is computed. If training improves only the training loss but not the validation loss,
early stopping is triggered. The patience parameter defines how many epochs without
improvement in the validation loss are tolerated before early stopping is activated. The
explained procedure is repeated until the maximum number of epochs is reached or early
stopping is triggered.

6.2. Multiclass Classification

The DNN trained for this analysis is designed to perform a multiclass classification. Each
input sample belongs to one of three classes and is assigned a probability that the sample
belongs to the respective class. The classes consist of the signal process HWWggf and
the two background processes tt and DibosonQCD, as these represent the most relevant
contributions. The DNN consists of three hidden layers, that have 64 nodes each. The
activation function is ReLU, which is defined as

ReLU(x) = max(0, x). (6.3)

To convert the model output to probabilities, the softmax function is used. The loss is
computed with the CrossEntropyLoss function, the optimiser is Adam [28]. To achieve a
stable training process, the training rate is η = 0.0005. In order to prevent overfitting,
the patience is 50, the number of maximal epochs is 20000. The input features include
the energy, azimuthal angle, pseudo-rapidity, and transverse momentum of the leading
electron and muon, as well as those of the leading and sub-leading jets. In addition, the
missing transverse energy, its azimuthal angle, and its significance, defined as S = Emiss

t
ΣEt

,
are taken into account. Lastly, the scalar sum of transverse energy is included. Therefore,
the input layer has dimension din = 20. To achieve stable and fast training and prevent
features with high values from dominating over others, all features are scaled to lie in the
interval [0, 1]. For a set A containing all values of one feature, every value a ∈ A is scaled
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6.2. Multiclass Classification

via

a′ = a− amin

amax − amin
, (6.4)

where a′ is the scaled value and amin and amax are the minimum and maximum of A.
To evaluate the model’s ability to generalise to unseen data, k-fold cross-validation is
employed. This technique divides the dataset into k equally sized folds. Each of the k
models is trained on k − 1 folds, ensuring that for every fold there is a model that was
not trained on it. Therefore, the entire dataset can be evaluated by models that have
not seen the corresponding data during training, allowing for a reliable assessment of the
models’ performance. For this analysis, k is set to two. All events with an even event
number are assigned to one fold, while events with an odd event number are assigned to
the other. Within each fold, 20% of the data are used for validation and 80% for training.
Events entering the training process must satisfy the selection criteria for one of the signal
or background regions, as described in the Tables D.1 and D.2. Furthermore, they are
required to contain no b-jets at an 85% efficiency working point, in order to include only
background events that closely resemble the signal.

The training process is evaluated using the loss curves, which are shown in Figure
6.1. They display the training and validation loss after every epoch for each fold. The
fluctuations in the validation loss are due to the smaller sample size of the validation
dataset. Both training and testing loss values converge for both folds and early stopping
was triggered after 63 and 161 epochs, indicating that overfitting was prevented. The
models’ ability to correctly classify events of different classes is assessed by analysing
their output score distributions. The average output distributions across both folds are
presented in Figure 6.2. For each of the three possible output scores of the models the
distributions of the true classes are shown. The bottom plot, which displays the HWW

output score, indicates that signal and background are well separated, both background
processes are mostly assigned very low probabilities P (HWW ), whereas the signal process
accumulates at high probability scores. The upper plots, showing the distributions for
both background processes, confirm that HWW processes mostly are assigned low prob-
abilities to be background. However, these plots also suggest that the models struggle to
distinguish between the two background processes themselves. Despite this, the training
behaviour observed in these plots still can be considered successful, since the main goal
is to separate the signal from the background processes. The output distributions for the
individual folds are shown in Appendix B.
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6. Event Classification

Figure 6.1.: The plots show the training and validation loss curves for both folds.

Figure 6.2.: The output score distributions for the signal score (bottom), the tt score
(upper right) and the Diboson score (upper left) are displayed. The distri-
butions are normalised and represent the average of both folds.

6.3. Square Cut Method

The probability scores assigned to each event are used as selection criteria to better
distinguish between signal and background processes. Due to the softmax function, for
every event the three scores sum up to one. Therefore, they can be represented in a two-
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6.3. Square Cut Method

dimensional plane, where x- and y-axes are the tt and Diboson score and the HWW score
is shown implicitly. Since probabilities cannot exceed one, triangular shapes are expected.
For each of the three classes, these plots are created, with the results for the 0-jet region
shown in Figure 6.3. A clear separation can be observed: HWW events accumulate near
the origin, indicating high HWW scores, while both background processes mostly appear
near the hypotenuse of the triangle. This supports the earlier statement, that the model
poorly differentiates between the two background processes. Otherwise, the events would
be expected to concentrate in the upper and lower left corners of the triangle. However, for
all classes, especially the background, the events spread almost across the whole triangle,
showing that the model sometimes confuses them with signal events and vice versa. The
plots for the other jet regions can be found in the appendix in Figure C.1 and show similar
distributions.

For a successful analysis, both the signal purity and its statistical significance should be
maximal. To achieve this, the signal-to-background ratio, S

B
, and the statistical measure

S√
B

are maximised. To find the cuts on the probability scores, that maximise these
fractions, the square cut method is employed. For every possible combination of cuts
on the tt and Diboson scores, using a step size of 0.02, the cumulative sums of S

B
and

S√
B

are computed over all bins within the rectangle from the origin, representing events
with zero probability to be background, to the given cut point. The resulting S

B
and

S√
B

distributions for the 0-jet region are shown in Figure 6.4. The signal-to-background
ratio S

B
reaches its maximum value of approximately 0.8 near the origin, and then rapidly

decreases to around 0.4. Therefore the highest value would be obtained by applying
very tight cuts on both scores. However, inspection of the S√

B
distribution shows that

such cuts would result in very low statistics. The S√
B

metric reaches high values slightly
farther from the origin and remains high over a broader region. In this area, the S

B
ratio

shows a relatively small gradient. Therefore, the cut combination that maximises S√
B

is chosen as the final selection criterion, as the signal purity remains reasonably high.
The corresponding distributions for the other jet regions are presented in the appendix in
Figure C.2 and show similar behaviour. The cut combinations maximising the respective
fractions are listed in Table 6.1. For all signal regions, the cut combinations leading to
the highest S√

B
are chosen as final selection criteria. All events having smaller or equal

scores pass the selection. To enrich the background processes in the respective control
regions for tt and Diboson, the cuts are also applied on these regions. Since events in the
tt region are required to have two or more jets, the cut combination for the 2-jet region is
chosen. The selected tt score is extended to divide the triangular distribution into three
regions representing the 2-jet signal region near the origin, the Diboson control region at
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Table 6.1.: The table lists the cuts on the DNN scores which maximise the signal-to-
background ratio and statistical significance for different jet regions. The
cuts calculated for S√

B
are chosen as selection criteria for the signal regions.

All events with an output score less than or equal to the cut pass the selec-
tion.

Jet region S/B S/
√

B

tt cut Diboson cut tt cut Diboson cut
0 jets 0.01 0.03 0.17 0.11
1 jet 0.01 0.01 0.13 0.11
≥2 jets 0.01 0.03 0.13 0.13

the top and the tt control region in the right corner. The final selection criteria for the
tight regions, where the DNN classification cuts have been applied, are listed in Appendix
D.

The summary plot of all signal and control regions, shown in Figure 6.5, illustrates the
contributions of all considered processes to the total number of events in a region, both
at the preselection level and after applying the cuts on the DNN scores. The regions
satisfying tighter selection criteria are indicated by (t). A significant reduction of the
respective background contributions is observed, demonstrating the effectiveness of the
applied selection.
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6.3. Square Cut Method

Figure 6.3.: The normalised event distributions of all considered classes are shown for
the 0-jet region.

Figure 6.4.: The signal-to-background ratio distribution (left) and the S√
B

metric dis-
tribution (right) depending on the background scores are displayed for the
0-jet region.
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6. Event Classification

Figure 6.5.: The figure shows the summary plot for all signal and control regions. The
(t) indicates that the cuts on the output scores have been applied.
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7. Event Reconstruction

To study the entanglement of the W bosons, each event has to be fully reconstructed. To
determine the kinematic properties of the decay, the four-momenta of the two charged
leptons and neutrinos originating from the W boson decays are required. The charged
leptons are measured in the detector, therefore their four-momenta are precisely known.
Neutrinos are not directly detected; the only accessible kinematic properties of the dineu-
trino system are its transverse energy and its azimuthal angle in the transverse plane,
both of which are indirectly inferred from the missing transverse energy, Emiss

t , and its
direction, φEmiss

t
. To fully reconstruct the neutrinos, reconstruction algorithms must be

employed.

7.1. Reconstruction Algorithms

The reconstruction is performed with three reconstruction algorithms, which are tested
and compared on their ability to precisely reconstruct the four-momenta of the neutrinos
and other properties of the event. The algorithms are referred to as Reco algorithm,
Weighting algorithm and Extended reco algorithm. The procedure for each algorithm is
explained in the following.

Reco Algorithm

The Reco algorithm was originally proposed in [29]. First, the four-momentum of the
dineutrino system is reconstructed. Due to conservation of energy and momentum, the
squared four-momentum of the Higgs boson pH , which equals its squared invariant mass
MH , can be expressed with the four-momenta of the dilepton system pℓℓ and the dineutrino
system pνν , which leads to the expression p2

H = M2
H = (Eℓℓ +Eνν)2 − (p⃗ℓℓ + p⃗νν)2. Eii and

p⃗ii refer to the energy and three-momentum of the charged lepton or neutrino system.
With the missing transverse energy, Emiss

t , and its angle, φEmiss
t

, the x- and y-component
of the dineutrino system are determined to be pνν

x,y = Emiss
x,y . Finally, the Higgs mass is
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7. Event Reconstruction

expressed as

M2
H = 2Eℓℓ

√
M2

νν + (Emiss
t )2 + (pνν

z )2 − 2pℓℓ
x E

miss
x − 2pℓℓ

y E
miss
y − 2pℓℓ

z p
νν
z +M2

ℓℓ +M2
νν ,

(7.1)

where the energy of the neutrinos is written as Eνν =
√
M2

νν + (Emiss
t )2 + (pνν

z )2. The
only parameters in this equation, which are not measured by the detector, are the masses
of the Higgs boson and the dineutrino system, and the z-component of the dineutrino
momentum. The dilepton mass is not directly measured, but is easily derived from its
four-momentum. To solve the equation with three unknown parameters, two constraints
are imposed on the system. The mass of the Higgs boson is fixed to its rounded world-
average value of MH = 125 GeV [9]. The mass of the dineutrino system is set to its
average value in this decay, which is Mνν = 30 GeV according to reference [29]. These
constraints leave pνν

z as the only unknown parameter. It can be determined by solving
the obtained quadratic equation

a(pνν
z )2 + bpνν

z + c = 0, (7.2)

where a = (pℓℓ
z )2 − Eℓℓ2, b = M2

fixp
ℓℓ
z , c = 1

4M
4
fix − E2

ℓℓ((Emiss
t )2 +M2

νν) and
M2

fix = M2
H −M2

ℓℓ −M2
νν + 2pℓℓ

x E
miss
x + 2pℓℓ

y E
miss
y . The quadratic equation is solved for pνν

z ,
yielding the solutions pνν

z = −b±
√

∆
2a

, where the discriminant is defined as ∆ = b2 − 4ac.
Depending on the value of the discriminant, there are three ways to proceed.
∆ = 0: The quadratic equation returns one solution for pνν

z , which is taken as the result.
∆ < 0: Equation (7.2) yields two solutions, which are imaginary. For these cases,
the mean value of Mνν is 17 GeV, which is lower than 30 GeV. Therefore, the initial
approach to obtain a real solution is to relax the constraint on the dilepton mass by
setting Mνν = 0, with the aim of reconstructing cases where 0 < Mνν < 30 GeV. If
the discriminant remains negative, pνν

z is chosen such that ∂M2
H

∂pνν
z

= 0, which yields the

determining equation pνν
z = pℓℓ

z

√
(Emiss

t )2+M2
νν√

E2
ℓℓ

−(pℓℓ
z )2 . If the discriminant becomes positive, the

event is treated as explained in the following case.
∆ > 0: In this case, equation (7.2) yields two real solutions for pνν

z . The solution, which
pushes the dilepton system more towards the transverse plane, is chosen. This is done
by minimising | cosψ∗

ℓℓ|, where ψ∗
ℓℓ is the opening angle of the dilepton system with the

z-axis in the Higgs restframe.

Once the four-momentum of the dineutrino system has been reconstructed, the four-
momenta of the individual neutrinos need to be extracted. As discussed in Subsection
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7.1. Reconstruction Algorithms

2.1.3, the neutrinos are often collinear in the Higgs restframe. Therefore, they are assumed
to be collinear. This leads to the ansatz p⃗ν,on = α2p⃗νν and p⃗ν,off = (1−α2)p⃗νν . Here, p⃗ν,on/off

refers to the three-momentum of the neutrino, that will be matched to the on/off-shell
W boson. The corresponding neutrinos are denoted as νon and νoff. The positive scaling
factor is α2. An overview of calculating α2 and fully determining the separate neutrino
momenta is given in the following. The complete derivation is performed in Appendix E.
To determine α2, one W boson is constrained to be on-shell and consequently having a
mass of MW = 80.379 GeV [9]. This leads to an expression for α2, which is

α2 = MW,on

2(EℓEνν − p⃗ℓp⃗νν) . (7.3)

To match the charged leptons to the on- and off-shell W bosons, the invariant mass is
calculated for the sum of each charged lepton’s four-momentum and that of the dineutrino
system. The lepton that yields the higher invariant mass with the dineutrino system is
associated with the on-shell W boson, whereas the other is assigned to the off-shell W
boson. If (7.3) returns a solution α2 > 1, it is fixed to be α2 = 1.

To resolve the contradiction between the assumption that the neutrinos are collinear,
which implies a massless dineutrino system, and the imposed constraint of Mνν = 30 GeV,
a fictive mass is assigned to the neutrino associated with the off-shell W boson. The fictive
mass is calculated as

Mνf =
√

(Eνν − α2|p⃗νν |2)2 − (1 − α2)2|p⃗νν |2. (7.4)

The final four-momenta of the neutrinos are defined over their three-momentum-components
and respective masses according to

pν,on = (α2Emiss
x , α2Emiss

y , α2pνν
z , 0) (7.5)

and

pν,off = ((1 − α2)Emiss
x , (1 − α2)Emiss

y , (1 − α2)pνν
z , Mνf). (7.6)

Weighting Algorithm

The approach for the Weighting algorithm is to once again assume that the neutrinos
are collinear and scan over different values of the dineutrino pseudo-rapidity ηνν and
the scaling factor α2, which is defined as before. Every solution receives a weight, and
the solution corresponding to the highest weight is selected. First, the dineutrino four-
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7. Event Reconstruction

momentum is defined through Emiss
t , φEmiss

t
and Mνν = 30 GeV, which corresponds to

the constraint from the Reco algorithm. The remaining component needed to fully define
the four-momentum is ηνν . To determine which values to test, a Gaussian curve is fitted
to the distribution of ηνν at the truth level, shown in Figure 7.1. The fitted parameters
are the mean value µ = 0.00 ± 0.07, the standard deviation σ = 2.07 ± 0.07 and the
amplitude A = 15300 ± 500, which is not relevant for further calculations. The inverse
cumulative distribution function is employed to determine 100 quantiles, corresponding
to the values of ηνν that are tested. To determine the separate neutrino four-momenta,
100 equidistant values between 0.1 and 1.0 are used as scaling factor α2. Given two four-
momenta for the charged leptons and two for the neutrinos, four possible candidates for
the on-shell W boson four-vector arise. Each candidate is constructed by summing the
four-momenta of one charged lepton and one neutrino. A candidate is considered valid,
if the mass difference ∆Won of the reconstructed on-shell W boson and its theoretical
value of MW = 80.379 GeV is less than 25 GeV. Furthermore, the mass difference ∆H

of the reconstructed Higgs boson, which is obtained by adding the four-momenta of both
charged leptons and both neutrinos, has to be less than 30 GeV. If a solution is considered
as valid, it is assigned a weight,

w = exp
(

−(∆Won)2

2σ2
W

− (∆H)2

2σ2
H

)
. (7.7)

The widths are defined as σW = 2 GeV and σHiggs = 2 GeV. The solution with the
highest weight is chosen.

Extended Reco Algorithm

The Extended reco algorithm is based on the Reco algorithm, but the restriction requiring
the dineutrino mass to be Mνν = 30 GeV is loosened. The distribution of Mνν is plotted
on truth level and a Gaussian curve is fitted. The resulting distribution is shown in Figure
7.2. The fitting parameters are the mean value µ = 32.01 ± 0.4, the standard deviation
σ = 18.1 ± 0.4 and the amplitude A = 1770 ± 30, which again is not relevant for further
calculations. Similar to the Weighting algorithm, the inverse cumulative distribution
function is used to determine 100 quantiles, which represent the values of Mνν , that are
tested. For each value, defining the constrained mass, the complete Reco algorithm is
performed. Every solution is assigned with a weight

w = exp
(

−(∆Won)2

2σ2
W

− (∆H)2

2σ2
H

)
. (7.8)

30



7.2. Evaluation of the Reconstruction Algorithms

Figure 7.1.: The figure shows the truth-level distribution of ηνν and a Gaussian function
fitted to the data. The fitted parameters are the mean value µ = 0.00±0.07,
the standard deviation σ = 2.07±0.07 and the amplitude A = 15300±500.

The widths are defined as before in Section 7.1. The solution associated with the highest
weight is selected.

Reconstruction on Truth Level

To evaluate and compare the performance of the algorithms, the reconstructed values are
compared to their corresponding truth-level values. The truth information is included in
the signal samples used. In the reconstruction, the particles are referred to as on-shell
and off-shell, depending on whether they are matched to the W boson treated as on-shell
or to the other W boson, which has a lower mass. In order to compare the reconstructed
particles with their correct truth-level counterparts, the truth particles are also labelled
as on-shell and off-shell accordingly. To achieve this, the sums of the four-momenta for all
possible combinations of charged leptons and neutrinos are computed. The combination
that yields the invariant mass closest to MW = 80.379 GeV is assigned to be the on-shell
lepton and on-shell neutrino, while the remaining pair is labelled as off-shell.

7.2. Evaluation of the Reconstruction Algorithms

For a successful quantum tomography in order to study the entanglement of the W bo-
son in the process H → WW ∗ → ℓ+νℓ−ν, it is essential to reconstruct the neutrino
four-momenta precisely. This section evaluates the performance of three reconstruction
algorithms with respect to this task and compares them against each other. Initially, gen-
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7. Event Reconstruction

Figure 7.2.: The figure shows the truth-level distribution of Mνν and a Gaussian
function fitted to the data. The fitted parameters are the mean value
µ = 32.01 ± 0.4, the standard deviation σ = 18.1 ± 0.4 and the amplitude
A = 1770 ± 30.

eral characteristics of the reconstruction are discussed. Subsequently, the reconstructed
neutrino quantities are compared to their respective truth-level values for the HWWggf

sample.

Evaluation of the Scaling Factor α2

For all algorithms, a central component in dividing the dineutrino momentum between
the individual momenta is the scaling factor α2. Its distributions for SR0j are shown
in Figure 7.3 for all algorithms. In the case of the Weighting algorithm, a large dip
at around 0.5 is observed, with the distribution exhibiting symmetry about this point.
This suggests that νon and νoff are treated equivalently when splitting the dineutrino
momentum. In contrast, the distributions of the other two algorithms steadily increase
towards a value near 0.8 and display higher bin counts at larger values of α2. The
neutrinos share identical initial conditions, except for the mass of their mother particles.
Consequently, the neutrino originating from the heavier W boson, νon, is expected to
possess greater momentum than νoff. Both the Reco algorithm and the Extended reco
algorithm demonstrate significantly better agreement with this expectation. Furthermore,
the distribution of the Reco algorithm shows a lot of entries at α2 = 1, indicating that
originally α2 was often calculated to exceed one. This leads to νoff being at rest and
contradicts the collinear hypothesis. This issue no longer arises for the Extended reco
algorithm. Allowing a wider range of values for the dineutrino mass appears to result in a
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Figure 7.3.: The figure shows the computed scaling factor α2 for SR0j for all algorithms.

more realistic reconstruction. Consequently, this algorithm produces the most physically
realistic distribution of α2. The α2 distributions for the other jet regions can be found
in the appendix in Figuren F.1 and exhibit similar behaviour, although the dip at 0.5
for the Weighting algorithm is significantly less pronounced in SR2j. The distributions
obtained with the Weighting algorithm show a small number of events with α2 = −1.
This value does not correspond to a physically relevant solution, but rather serves as a
default for events that fail the mass difference requirements with respect to the constrained
Higgs and on-shell W boson masses, which are necessary for the algorithm to perform
a successful reconstruction. The distributions for the other jet regions exhibit similar
behaviour. However, this affects only a few hundred events per jet region. For a further
analysis of the quantum-mechanical behaviour of the W bosons, these events could be
excluded without significantly reducing the statistics.

Discussion of the Reconstructed Masses MH and MWon

Furthermore, the reconstructed Higgs boson and on-shell W boson masses are examined.
The corresponding distributions for SR0j are shown in Figure 7.4, while the distributions
for the other regions are provided in the appendix in Figure F.2. For the Reco algorithm
as well as the Extended reco algorithm, these masses are fixed to be MH = 125 GeV and
MW = 80.379 GeV. Therefore, the distributions exhibit very sharp peaks at these values
across all jet regions. However, the peak in the Reco algorithm contains around 1000
fewer events. These events accumulate at lower mass values. This difference corresponds
to the number of events assigned α2 = 1. This is expected from Equation (E.2), because
values α2 > 1 imply that a momentum greater than the dineutrino momentum must be
assigned to νon to satisfy the on-shell W mass constraint. Since this is not possible, as α2
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cannot exceed one, the reconstructed mass of the on-shell W boson is smaller than the
imposed constraint. This is also observed for the other jet regions.

Examining the Weighting algorithm, the mass distribution of the on-shell W boson
exhibits a pronounced peak at the constrained value. In contrast, the peak corresponding
to the Higgs boson mass is less sharp, and several events with higher masses are observed.
This effect diminishes as the number of considered jets increases. This behaviour is unex-
pected, since the algorithm assumes the neutrinos to be collinear, which best approximates
the true physical behaviour in the absence of jets and when the Higgs boson is at rest.
Nevertheless, although the assumed masses are not directly imposed on the system, the
algorithm still, in most cases, finds values for α2 and η, that satisfy the expected mass
constraints.

However, it should be noted that the sharpness of the mass peaks is much higher than
expected for this process. In particular, although the W boson is commonly assumed to
be on-shell, this assumption is not universally valid, as there exist scenarios in which both
W bosons are off-shell. Therefore, these tight constraints on the respective masses should
be revisited to improve the reconstruction algorithms.

7.2.1. Evaluation of the Reconstructed Neutrino Kinematics

To evaluate the algorithms’ ability to accurately reconstruct the neutrino kinematics of
the signal process, their reconstructed kinematic quantities are compared to their cor-
responding truth-level values. Only the HWWggf sample is evaluated, as the HWWvbf

contribution to the signal is comparatively small. For each event, the reconstructed value
is plotted against its truth value. An ideal reconstruction is indicated by a diagonal
distribution, representing a high degree of accuracy. The diagonality d, defined as the
normalised sum of all bins along the diagonal, is used as a quantitative measure of this
behaviour. Its values are provided at the corresponding plots. Additionally, the difference
between the truth and reconstructed values is analysed. The analysed kinematic quan-
tities are the pseudo-rapidity η, the transverse momentum pt as well as its longitudinal
component pz. It should be noted that the unreconstructed events for the Weighting
algorithm have not been excluded from the following plots, because this effect is inherent
to the algorithm and should be part of the evaluation. Since the default values of the
considered quantities are zero, these events accumulate along a horizontal line where the
reconstructed value is zero. As discussed before, this affects only a few hundred events
per region. Nevertheless, due to this effect, the Weighting algorithm can be considered
slightly more accurate than the plots might suggest.
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Figure 7.4.: The distributions of the reconstructed Higgs and on-shell W boson masses
are shown for SR0j.

Evaluation of the Pseudo-Rapidity η

The two-dimensional distributions as well as the residual distributions of the pseudo-
rapidity are shown in Figure F.3 for νon and in Figure F.4 for νoff. Across all jet regions and
for both neutrinos, the Weighting algorithm exhibits the best reconstruction performance
at higher values of η, which results in the distribution appearing more diagonal. Due
to the scanning over a range of η values, larger values are more frequently selected as
the solution. Furthermore, for the off-shell neutrino, the Reco algorithm produces a high
event density at a reconstructed value of zero. This corresponds to the large number
of events assigned with α2 = 1, which leads to the off-shell neutrino’s three-momentum
becoming a zero vector, for which η = 0 holds. Nevertheless, the calculated diagonality
values, as well as the residual plots, indicate that overall, the Reco algorithm provides
the most accurate reconstruction of η. However, all two-dimensional distributions appear
reasonably diagonal, and the calculated diagonality values, which indicate that 5.9 to even
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7. Event Reconstruction

10.7 percent of the events lie on the diagonal, are of comparable magnitude. The residual
plots show distinct peaks at zero for all algorithms, and the distributions appear broadly
similar, despite minor variations in the peak heights.

Evaluation of the Transverse Momentum pt

The two-dimensional distributions and the residual plots for the transverse momentum
are shown in Figure F.5 for νon and in Figure F.6 for νoff. Across all algorithms, the two-
dimensional distributions appear highly dispersed. While for the on-shell neutrino the
event densities tend to accumulate along the diagonal, the distributions for the off-shell
neutrino are broadly spread across the entire plane and lack a clear diagonal structure.
This is reflected in very low calculated diagonality values. For the on-shell neutrino,
the Weighting algorithm in particular yields a lower diagonality and the peak in the dif-
ference distributions is not as high as for the other algorithms. This effect cannot be
solely attributed to the few hundred unreconstructed events, which only slightly reduce
the diagonality, but rather indicates inferior reconstruction performance. The other algo-
rithms, however, perform comparably for the on-shell neutrino. Only the Reco algorithm
exhibits a tendency to reconstruct pt,on as slightly too large, as indicated by a shift to-
wards negative values in the difference distributions. This is due to the large number
of events assigned with α2 = 1, since it is not physically realistic for a single neutrino
to account for the entire amount of missing transverse energy measured by the detector.
The effect of these events is also observed for the off-shell neutrino. The Reco algorithm
again exhibits a high event density at preco

t = 0, representing the events with α2 = 1.
A significant shift of the difference distribution towards positive values can be observed,
indicating that the reconstructed values are too low, and not actually zero. The other two
algorithms show a more accurate reconstruction of pt,off, and the difference distributions
are more strongly centred around zero. Nevertheless, all algorithms struggle to precisely
reconstruct pt,off, as indicated by the low diagonality values, with only 2.7 to 5.5 percent
of events reconstructed on the diagonal, and the absence of a clear diagonal structure
in the two-dimensional distributions. Furthermore, for all algorithms, the reconstruction
accuracy decreases with an increasing number of jets in the respective region. Since pt,on

and pt,off are directly derived from the measured missing transverse energy and the scaling
factor α2, the reduced accuracy of α2 in events with multiple jets is responsible for this
behaviour. This is expected, as the use of a scaling factor is only meaningful under the
assumption that the neutrinos are collinear, a condition that holds more accurately when
fewer jets are present.
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7.2. Evaluation of the Reconstruction Algorithms

Evaluation of the Longitudinal Momentum pz

The two-dimensional distributions, as well as the residual plots for the longitudinal com-
ponent of the momentum, pz, are depicted in Figure F.7 for νon and in Figure F.8 for νoff.
The two-dimensional distributions of νon are spread across the entire plane, but exhibit
a somewhat diagonal shape, indicated by moderate diagonality values compared to the
other distributions, with 4.4 to 7.0 percent of all events lying on the diagonal. The Ex-
tended reco algorithm provides a slightly more accurate reconstruction than the other two
algorithms, as evidenced by the highest diagonality values and the most pronounced peak
at zero at the difference distributions. The two-dimensional distributions of the off-shell
neutrino’s longitudinal momentum are also spread and do not exhibit a clear diagonal
structure. Nevertheless, the computed diagonality values are relatively high compared to
those of pz,on, indicating that 6.6 to 8.4 percent of all events lie along the diagonal. This
can be attributed to a relatively accurate reconstruction of lower values of pz,off. In con-
trast, for high values of ptruth

z,off , all algorithms appear to encounter difficulties. The Higgs
boson has spin zero, and therefore the distribution of the W bosons is isotropic in the
Higgs restframe, leading to generally lower values of their longitudinal momenta. Since
the leptons tend to be emitted collinearly or anti-collinearly with their parent particles
in this process, the longitudinal component of the neutrino momenta is often small. This
results in a more accurate reconstruction of pz,off by the Reco algorithm, as in the common
case where α2 is computed to be one, the reconstructed value is identically zero. However,
this cannot be considered a genuine indication of good algorithmic performance, as it does
not result from an accurate reconstruction; the same outcome would be obtained by sim-
ply always setting the value to zero. Moreover, this behaviour frequently occurs even for
higher values of ptruth

z,off , indicated by a high density of events near the bottom of the plot.
Therefore, the Extended reco algorithm yields the most reliable results, closely followed
by the Weighting algorithm. For both neutrino types and across all algorithms and jet
regions, a shift in the difference distributions towards positive values is observed. This
suggests that, for all algorithms, pνν

z tends to be systematically underestimated. This
effect is less pronounced for the Weighting algorithm, likely because the scanning over
multiple values of η also increases the range of considered values for pνν

z . Nevertheless,
the Extended weighting algorithm can be considered the most reliable, although it strug-
gles to accurately reconstruct especially higher values of the longitudinal momentum.
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7. Event Reconstruction

Conclusion

In conclusion, all algorithms exhibit their individual strengths and weaknesses in the
reconstruction of the neutrinos. For some variables, such as pt,off, pz,on and pz,off, an
improvement is observed when moving from the Reco algorithm to the Extended reco
algorithm, indicating that scanning over multiple values of Mνν yields a more accurate
reconstruction by preventing the scaling factor α2 from frequently being equal to one. The
approach of scanning over a range of values for the pseudo-rapidity also appears promising,
as the Weighting algorithm provides a more reliable reconstruction of higher values of η
and pz of both neutrino types. An overview of the advantages and disadvantages is shown
in Table 7.1.

However, to achieve a more precise reconstruction, the collinear approach for the neu-
trinos needs to be revisited, since it only applies when the Higgs boson is assumed to
be at rest. The limited accuracy in the computation of α2, particularly evident in the
reconstruction of pt,on and pt,off, is not only due to the general assumptions underlying
the algorithms, but primarily to the fact that an exact value of α2 cannot be defined, as
the neutrinos are not perfectly collinear in reality.

Furthermore, the strategy of selecting solutions that best match the assumed masses of
the Higgs boson and the W boson, which is treated as on-shell, should be re-evaluated. As
shown in Figures 7.4 and F.2, this condition is well satisfied by all algorithms and across all
jet regions, as it is explicitly imposed by the reconstruction strategies. Nevertheless, only
a small percentage of events are reconstructed with high precision, as discussed above,
suggesting that additional selection criteria should be applied when identifying the most
accurate reconstruction of an event.

However, given the number of assumptions required for neutrino reconstruction, the
achieved accuracy is promising. The strengths and weaknesses of the individual algo-
rithms have been clearly identified, providing a basis for further improvements in their
performance.
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7.2. Evaluation of the Reconstruction Algorithms

Table 7.1.: The table shows an overview of advantages and disadvantages of the evalu-
ated algorithms.

Algorithm Advantages Disadvantages

Reco Algorithm • MH and MWon are recon-
structed accurately with re-
spect to their assumed values

• accurate reconstruction of η

• α2 is often equal to one
• many assumptions
• low accuracy for pt,off and pz

Weighting Al-
gorithm • more accurate for larger values

of η
• less precise reconstruction of
MH

• reconstruction of pt and pz less
accurate

Extended Reco
Algorithm • α2 is less often equal to one

• more accurate for pt,off and pz

• accuracy of pt,off and pz,off still
only moderate
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8. Conclusion and Outlook

This thesis investigates analysis strategies aimed at studying quantum signatures in the
process H → WW ∗ → ℓνℓν. The two key steps required to access quantum-sensitive
observables in the considered process are the separation of signal and background events,
and a precise reconstruction of the final-state leptons and neutrinos.

To separate signal events from background events, a deep neural network is used. A
multiclass classification task is performed, including the signal process HWW as well
as the background processes Diboson and tt. K-fold cross validation is used to assess
the model’s ability to generalise to unseen data. The DNN outputs are used to define
signal and control regions via a square cut method. This technique leads to a significant
improvement in the signal purity and statistical significance within the signal regions.
However, the background contributions remain large. To further improve this, the training
should be extended to include the Zττ sample, and other background processes, such as
fake leptons, should be considered. A multi-dimensional square cut optimisation could be
conducted to define selection criteria that take all background processes into account.

To study the entanglement of the W bosons, quantum tomography techniques are a
common approach. To enable such analyses, each event must be fully reconstructed. The
greatest challenge in obtaining the final state for the process H → WW ∗ → ℓνℓν is the
neutrino reconstruction, as neutrinos are not directly detected by the ATLAS detector. In
this thesis, three algorithms are tested for their ability to precisely reconstruct the neutri-
nos in the considered process. Constraints are imposed on the Higgs mass and the mass of
the on-shell W boson, and the neutrinos are assumed to be collinear. The reconstructed
values for the pseudo-rapidity, the longitudinal and transverse momentum of both neutri-
nos are evaluated against their truth-level counterparts, and the algorithms are compared
based on their ability to precisely reconstruct these values. The reconstruction accuracy of
the pseudo-rapidity and the momentum components of the on-shell neutrino is relatively
high across all algorithms. In contrast, all methods struggle to accurately reconstruct pt,off

and pz,off. Nevertheless, considering the number of constraints and assumptions involved
in neutrino reconstruction, the overall performance appears promising, and the specific
strengths of each algorithm have been identified. In particular, the approach of scan-
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ning over a range of values for the pseudo-rapidity, the dineutrino mass and the scaling
factor shows potential. This strategy should be extended to include additional variables
such as the longitudinal momentum of the dineutrino system, enabling multi-dimensional
scanning over possible configurations across the entire phase space. Furthermore, the
collinear hypothesis assumed for the neutrinos should be revisited, as it does not hold for
the majority of events, particularly those with higher jet multiplicity. Since the angular
distribution of the final state particles is an important observable for quantum tomog-
raphy, greater efforts should be directed towards allowing reconstruction configurations
that do not require the neutrinos to be exactly collinear. Besides the mass requirements
on the Higgs and the on-shell W boson, additional criteria should be considered when
selecting the optimal reconstruction.

In conclusion, this thesis has investigated various analysis strategies to probe quantum
signatures in the process H → WW ∗ → ℓνℓν, revealing key aspects with potential for
further improvement. Consequently, a solid foundation has been established to pave the
way for the successful application of quantum tomography and the detailed study of
quantum entanglement in this process.
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A. MC Event Generation

The Monte Carlo event generators used in this analysis are Powheg [17], Pythia [19] and
Sherpa [18]. The samples and their corresponding generators are listed below.

Table A.1.: The table lists MC Generator and Parton Shower configurations for the
considered samples.

Sample Generator Parton Shower
HWWggf Powheg Pythia 8
HWWvbf Powheg Pythia 8
DibosonEWK Sherpa 2.2.12
DibosonQCD Sherpa 2.2.14
tt Powheg Pythia 8
Wt Powheg Pythia 8
Wjets Sherpa 2.2.11
Zjets Sherpa 2.2.11
Zττ Sherpa 2.2.14
Vγjets Sherpa 2.2.14
Other Higgs Powheg Pythia 8
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B. DNN Output Distributions of the
Individual Folds

Figure B.1.: The figure shows the output distributions for all classes. Each column
represents one fold.
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C. Additional Square Cut Results

Figure C.1.: The figure shows the normalised event distributions for all classes for SR1j
(left) and SR2j (right).
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C. Additional Square Cut Results

Figure C.2.: The figure shows the distributions of the cumulative sums of S
B

and S√
B

for SR1j (top) and SR2j (bottom).
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D. Selection Criteria

Table D.1.: The table lists the Selection criteria used for the signal regions. The (t)
denotes that DNN classifier cuts have been applied.
Selection Criteria SR0j (t) SR1j (t) SR2j (t)
Jet multiplicity Njets = 0 Njets = 1 Njets ≥ 2
Missing transverse energy Emiss

t > 20 GeV
b-jet multiplicity Nb-jet, 90% = 0
Leading lepton pT pt ≥ 25 GeV
Subleading lepton pT pt ≥ 25 GeV
Dilepton mass 10 GeV < mℓℓ < 100 GeV
Number of electrons Ne = 1
Number of muons Nµ = 1
Diboson classification score ≤ 0.11 ≤ 0.11 ≤ 0.13
tt classification score ≤ 0.17 ≤ 0.13 ≤ 0.13

Table D.2.: The table shows the selection criteria used for the control regions. The (t)
denotes that DNN classifier cuts have been applied.
Selection Criteria CRDiboson (t) CRtt (t)
Missing transverse energy Emiss

t > 20 GeV
b-jet multiplicity Nb-jet, 90% = 0 Nb-jet, 65% ≥ 2
Leading lepton pT pt ≥ 25 GeV
Subleading lepton pT pt ≥ 25 GeV
Dilepton mass 10 GeV < mℓℓ < 100 GeV
Number of electrons Ne = 1
Number of muons Nµ = 1
Jet multiplicity Njets ≥ 2
Diboson classification score > 0.13 ≤ 0.13
tt classification score > 0.13
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E. Additional Derivations for the
Reco Algorithm

This section describes the calculation of the scaling factor α2, the matching of the leptons
to the on- and off-shell W bosons and the derivation of the fictive mass Mνf.

To determine α2, another constraint is imposed on the system. Since the mass of the
Higgs boson is MH = 125 GeV, its mass is smaller than the mass of two W bosons, which
have a mass of MW ≈ 80 GeV each. Therefore, one of the W bosons has to be off-shell.
The other W boson is now constrained to be on-shell and consequently having a mass of
MW = 80.379 GeV [9]. Since the W boson decays into a charged lepton and a neutrino,
the conservation of energy and momentum allows the constraint mass to be expressed in
terms of the reconstructed four-vectors of the decay products as

80 GeV = MW,on = (α2Eνν + Eℓ)2 − (α2p⃗νν + p⃗ℓ)2. (E.1)

This leads to an expression for α2, which is

α2 = MW,on

2(EℓEνν − p⃗ℓp⃗νν) . (E.2)

The masses of the leptons are neglected. To calculate this expression, the charged leptons
have to be matched to the on- and off-shell W bosons. Given that the on-shell W boson is
expected to have a higher mass than the off-shell W boson, the invariant mass is calculated
for the sum of each charged lepton’s four-momentum and that of the dineutrino system.
The lepton that yields the higher invariant mass with the dineutrino system is associated
with the on-shell W boson, whereas the other is assigned to the off-shell W boson. If
(E.2) returns a solution α2 > 1, it is fixed to be α2 = 1. The assumption of the neutrinos
being collinear leads to the dineutrino system being massless. This is in contradiction
with the mean value of Mνν = 30 GeV, that was mentioned before. To account for that,
the neutrino associated with the off-shell W boson is assigned a fictive mass Mνf. To
obtain it, the energy of the dineutrino system is expressed as the sum of the energies of
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E. Additional Derivations for the Reco Algorithm

the separate neutrinos as

Eνν = Eν,on + Eν,off = α2|p⃗νν | +
√

(1 − α2)2|p⃗νν |2 +M2
νf. (E.3)

The energy is Eνν =
√
M2

νν + |p⃗νν |2, such that the mass constraint from before is con-
served. Therefore, only events with Mνν = 30 GeV have a fictive mass that is non zero.
This leads to the expression

Mνf =
√

(Eνν − α2|p⃗νν |2)2 − (1 − α2)2|p⃗νν |2. (E.4)
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F. Evaluation of the Reconstruction
Algorithms
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Figure F.1.: The figure shows the scaling factor α2 for SR1j (top) and SR2j (bottom)
for all algorithms.

53



F. Evaluation of the Reconstruction Algorithms

60 65 70 75 80 85 90
) [GeV]onReco alg., m(W

0.5
0.75

1
1.25

 

D
at

a 
/ P

re
d. 0

1000

2000

3000

4000

5000

6000

Ev
en

ts

ATLAS Internal
-1 = 13 TeV, 140.0 fbs

HWW
SR1j (tight)
Pre-Fit

Data ggFHWW
VBFHWW Diboson

tt Wt
V+jets ττZ

+jetsγV Other H
HFF LFF
OtherF Uncertainty

60 65 70 75 80 85 90
) [GeV]onWeighting alg., m(W

0.5
0.75

1
1.25

 

D
at

a 
/ P

re
d. 0

1000

2000

3000

4000

5000

6000

Ev
en

ts

ATLAS Internal
-1 = 13 TeV, 140.0 fbs

HWW
SR1j (tight)
Pre-Fit

Data ggFHWW
VBFHWW Diboson

tt Wt
V+jets ττZ

+jetsγV Other H
HFF LFF
OtherF Uncertainty

60 65 70 75 80 85 90
) [GeV]onExtended reco alg., m(W

0.5
0.75

1
1.25

 

D
at

a 
/ P

re
d. 0

1000

2000

3000

4000

5000

6000

7000

8000

Ev
en

ts

ATLAS Internal
-1 = 13 TeV, 140.0 fbs

HWW
SR1j (tight)
Pre-Fit

Data ggFHWW
VBFHWW Diboson

tt Wt
V+jets ττZ

+jetsγV Other H
HFF LFF
OtherF Uncertainty

80 100 120 140 160 180
Reco alg., m(H) [GeV]

0.5
0.75

1
1.25

 

D
at

a 
/ P

re
d. 0

1000

2000

3000

4000

5000

6000Ev
en

ts

ATLAS Internal
-1 = 13 TeV, 140.0 fbs

HWW
SR1j (tight)
Pre-Fit

Data ggFHWW
VBFHWW Diboson

tt Wt
V+jets ττZ

+jetsγV Other H
HFF LFF
OtherF Uncertainty

80 100 120 140 160 180
Weighting alg., m(H) [GeV]

0.5
0.75

1
1.25

 

D
at

a 
/ P

re
d. 0

500

1000

1500

2000

2500

3000

3500

Ev
en

ts

ATLAS Internal
-1 = 13 TeV, 140.0 fbs

HWW
SR1j (tight)
Pre-Fit

Data ggFHWW
VBFHWW Diboson

tt Wt
V+jets ττZ

+jetsγV Other H
HFF LFF
OtherF Uncertainty

80 100 120 140 160 180
Extended reco alg., m(H) [GeV]

0.5
0.75

1
1.25

 

D
at

a 
/ P

re
d. 0

1000

2000

3000

4000

5000

6000

Ev
en

ts

ATLAS Internal
-1 = 13 TeV, 140.0 fbs

HWW
SR1j (tight)
Pre-Fit

Data ggFHWW
VBFHWW Diboson

tt Wt
V+jets ττZ

+jetsγV Other H
HFF LFF
OtherF Uncertainty

60 65 70 75 80 85 90
) [GeV]onReco alg., m(W

0.5
0.75

1
1.25

 

D
at

a 
/ P

re
d. 0

500

1000

1500

2000

2500

3000

3500Ev
en

ts

ATLAS Internal
-1 = 13 TeV, 140.0 fbs

HWW
SR2j (tight)
Pre-Fit

Data ggFHWW
VBFHWW Diboson

tt Wt
V+jets ττZ

+jetsγV Other H
HFF LFF
OtherF Uncertainty

60 65 70 75 80 85 90
) [GeV]onWeighting alg., m(W

0.5
0.75

1
1.25

 

D
at

a 
/ P

re
d. 0

500

1000

1500

2000

2500

3000

3500

Ev
en

ts

ATLAS Internal
-1 = 13 TeV, 140.0 fbs

HWW
SR2j (tight)
Pre-Fit

Data ggFHWW
VBFHWW Diboson

tt Wt
V+jets ττZ

+jetsγV Other H
HFF LFF
OtherF Uncertainty

60 65 70 75 80 85 90
) [GeV]onExtended reco alg., m(W

0.5
0.75

1
1.25

 

D
at

a 
/ P

re
d. 0

1000

2000

3000

4000

5000

Ev
en

ts

ATLAS Internal
-1 = 13 TeV, 140.0 fbs

HWW
SR2j (tight)
Pre-Fit

Data ggFHWW
VBFHWW Diboson

tt Wt
V+jets ττZ

+jetsγV Other H
HFF LFF
OtherF Uncertainty

80 100 120 140 160 180
Reco alg., m(H) [GeV]

0.5
0.75

1
1.25

 

D
at

a 
/ P

re
d. 0

500

1000

1500

2000

2500

3000

3500

Ev
en

ts

ATLAS Internal
-1 = 13 TeV, 140.0 fbs

HWW
SR2j (tight)
Pre-Fit

Data ggFHWW
VBFHWW Diboson

tt Wt
V+jets ττZ

+jetsγV Other H
HFF LFF
OtherF Uncertainty

80 100 120 140 160 180
Weighting alg., m(H) [GeV]

0.5
0.75

1
1.25

 

D
at

a 
/ P

re
d. 0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

Ev
en

ts

ATLAS Internal
-1 = 13 TeV, 140.0 fbs

HWW
SR2j (tight)
Pre-Fit

Data ggFHWW
VBFHWW Diboson

tt Wt
V+jets ττZ

+jetsγV Other H
HFF LFF
OtherF Uncertainty

80 100 120 140 160 180
Extended reco alg., m(H) [GeV]

0.5
0.75

1
1.25

 

D
at

a 
/ P

re
d. 0

500

1000

1500

2000

2500

3000

3500

Ev
en

ts

ATLAS Internal
-1 = 13 TeV, 140.0 fbs

HWW
SR2j (tight)
Pre-Fit

Data ggFHWW
VBFHWW Diboson

tt Wt
V+jets ττZ

+jetsγV Other H
HFF LFF
OtherF Uncertainty

Figure F.2.: The reconstructed masses of the on-shell W boson and the Higgs boson
are shown for SR1j and SR2j for all algorithms.54



Figure F.3.: This figure shows the distribution of the difference between the recon-
structed pseudo-rapidity, η, of νon and its corresponding truth-level value
(bottom). At the top, the reconstructed values are plotted against the
corresponding truth values. All algorithms and jet regions are shown, and
the calculated diagonality values are listed.
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Figure F.4.: The figure shows the distribution of the difference between the recon-
structed pseudo-rapidity, η, of νoff and its corresponding truth-level value
(bottom). At the top, reconstructed values are plotted against the corre-
sponding truth values. All algorithms and jet regions are shown, and the
calculated diagonality values are listed.
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Figure F.5.: The distribution of the difference between the reconstructed transverse
momentum, pt, of νon and its corresponding truth-level value are shown
(bottom). At the top, reconstructed values are plotted against the corre-
sponding truth values. All algorithms and jet regions are shown, and the
calculated diagonality values are listed.
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F. Evaluation of the Reconstruction Algorithms

Figure F.6.: The figure displays the distribution of the difference between the recon-
structed transverse momentum, pt, of νoff and its corresponding truth-level
value at the bottom. At the top, reconstructed values are plotted against
the corresponding truth values. All algorithms and jet regions are shown,
and the calculated diagonality values are shown.
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Figure F.7.: The distribution of the difference between the reconstructed longitudinal
momentum, pz, of νon and its corresponding truth-level value are shown
(bottom). At the top, reconstructed values are plotted against the corre-
sponding truth values. All algorithms and jet regions are shown, and the
calculated diagonality values are listed.
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Figure F.8.: The distribution of the difference between the reconstructed longitudinal
momentum, pz, of νoff and its corresponding truth-level value are shown
(bottom). At the top, reconstructed values are plotted against the corre-
sponding truth values. All algorithms and jet regions are shown, and the
calculated diagonality values are listed.
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