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Abstract
At the Atlas experiment at Cern, proton-proton (pp) collisions of an energy
of 13.6 TeV produce complex final states containing a wide range of overlapping
physical processes and share similar final state particles. This complexity creates
major challenges to clearly distinguish rare signal events accurately. Additionally,
limitations pertaining to the detector and uncertainties in particles’ reconstruction
lead us to the applications of sophisticated event classification techniques. This
thesis presents a method applying a graph neural network (GNN) to the classification
of final states containing a tt̄ paired with additional particles collectively referred to
as tt̄+X, wherein X can represent a Higgs boson (H), a Z or W boson, or a photon
(γ), using Monte Carlo simulated events. In contrast to standard techniques like
graph convolutional neural networks, including those requiring information to be in
grid-like structures, GNNs give options to inherently encode the physically relational
and spatial nature of a particle on a per-event basis, representing particles and
their interactions as nodes and edges of graphs. Utilizing an application of message
passing amongst nodes of graphs, GNNs give a richer description of event topologies,
thus aiding in a richer event identification. A series of model architectures are
studied, which includes Graph Attention Network and Graph Transformer, to find
the best version to achieve an optimization of multi-class classification across a
spectrum of event types.
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1 Introduction

The Standard Model (SM) [1–4] of particle physics is a highly successful and tested
model. It represents our most complete theoretical framework for understanding
fundamental particles and their interactions. The interactions in the Standard
Model of particle physics include three of the four fundamental forces, the fourth
being gravity. These forces are the electromagnetic (EM), weak nuclear, and strong
nuclear forces. These interactions in nature are described using symmetry groups
in the framework of gauge theories, which classify the elementary particles into
quarks, leptons, gauge bosons and the Higgs boson.
The quarks and leptons form matter, gauge bosons mediate forces that govern
the interactions between these particles, and the Higgs boson gives mass to these
elementary particles. This study focuses on the top quark, which is observed to have
an exceptionally large mass of 172.53 ± 0.33 GeV [5–9], which makes it the heaviest
known elementary particle. This gives the top quark an important role in testing
the Standard Model predictions, exploring the electroweak symmetry breaking
mechanism, and providing sensitivity to potentially new physics phenomena beyond
the Standard Model.
Experiments such as Atlas [10] at Cern record huge amounts of data from
proton-proton (pp) collisions at an energy of 13.6 TeV to probe these fundamental
interactions to test the Standard Model (SM) and search for physics phenomena
beyond. In these processes, events that involve top quark pair production could
also be accompanied by an additional particle. These events are collectively called
tt̄ + X events, with X representing additional particles such as a photon γ, Z0

boson, W± boson, or Higgs boson, and are of high interest [11–13].
However, the accurate characterisation of such tt̄+X processes is greatly computa-
tionally intensive as well as analytically challenging due to the multiplicity as well
as the complexity of the particles at the final state. Each of the collision processes
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1 Introduction

creates numerous jets, leptons, and photons, as well as missing transverse energy
(Emiss

T ), which create ambiguities of the respective observed particles towards the
processes that they originated from. This augments the probable particle-to-origin
assignments, which make the characterisation hard. Classical machine learning
and cut-based methods are likely to struggle with this complexity. Graph Neural
Networks (GNNs), introduced in recent years, are one of the alternatives presented,
which can be used for graph-structured data that contain means to naturally express
the relational and spatial structures of particle interactions event by event, with
particles and their interactions as graph nodes and edges. By their design, GNNs
are able to effectively propagate and build up relational information, enhancing
the ability to capture the relationally intrinsic structure of particle collision data.
The attention mechanism in Graph Attention Networks (GAT) makes them ben-
eficial. In contrast to the classical graph convolutional network method, GAT
calculates attention coefficients between connected nodes which assign an adaptive
coefficient to edge features like invariant mass, ∆R (a measure of the angular
separation between two particles in the detector), and node features like particle
kinematics. This increases the accuracy of event classification by allowing GAT to
highlight or downplay particular particle interactions. Graph transformers, with the
use of query, key, and value transformations, allow each particle node to attend to
every other particle in the event, enabling more expressive attention relationships.
Incorporating GAT or transformer-like attention mechanisms into GNN frameworks
thus represents a step for advancing the analysis of complex particle physics events.
This thesis focuses on the classification of tt̄+X/t+X processes using graph neural
networks, in which graph attention networks and graph transformers are explored.
The study demonstrates performance in classification tasks on simulated events.
Through this approach, the work aims to contribute more towards Standard Model
measurements and improved sensitivity to potential new physics.
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2 Theoretical Background

The Standard Model (SM) of particle physics is a highly successful theory. It
describes fundamental particles and their interactions, excluding gravity. It incor-
porates three of the four known fundamental interactions including electromagnetic,
weak, and strong. The fundamental interactions of nature are described using
symmetry groups in the framework of gauge theories and classifies the elementary
particles into quarks, leptons, gauge bosons and the Higgs Boson. This section
discusses the theoretical framework of the Standard model of particle physics.

2.1 Particle Content

The Standard Model particles are shown in Figure 2.1 and are classified into two
main categories which are fermions and bosons.

2.1.1 Fermions

The standard model of particle physics today categorises quarks and leptons as
fermions, which make up matter content. Every fermion has an associated anti-
fermion, they posses the same mass but carry opposite quantum numbers [14].
There are six quark flavours which are arranged as up type and down type. They
are named up, down, charm, strange, top and bottom (also called truth and beauty)
quarks. With up, charm, and top quarks categorised as up type and down, strange,
and bottom quarks as down types. They participate in all three interactions which
are described in the Standard Model. These interactions include strong, weak
and electromagnetic (EM) forces. The leptons which are categorised as down
type are electron, muon, and tau, and their corresponding down-type partners are
νe, νµ and, ντ , which are known as neutrinos. Leptons only interact via electroweak
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2 Theoretical Background

Figure 2.1: The Standard Model of Elementary Particles, illustrating the three
generations of fermions (quarks and leptons), along with the fun-
damental bosons responsible for mediating forces. Each particle is
labelled with its mass, electric charge, and spin. The left section
categorises matter particles, while the right section displays the in-
teraction carriers, which are gauge bosons (gluon, photon, W and Z
bosons) and the Higgs boson.

force and do not have colour charge.

2.1.2 Bosons

The gauge bosons in the Standard Model include the photon (γ), the W boson (W±),
the Z boson (Z0), and the gluon (g). They mediate the fundamental interactions
between particles. The Standard Model includes a single scalar boson known as
the Higgs boson H, which is responsible for the mechanism of mass generation
through spontaneous symmetry breaking.
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2.2 Gauge Structure of the Standard Model

2.2 Gauge Structure of the Standard Model

The Standard Model is a gauge quantum field theory based on the symmetry group
given by,

SU(3)C × SU(2)L × U(1)Y (2.1)

where SU(3)C corresponds to Quantum Chromodynamics (QCD), describing the
strong interaction between quarks mediated by eight gluons. SU(2)L × U(1)Y

governs the electroweak interaction, unifying electromagnetic and weak interactions
at high energies [15–21].

2.2.1 Quantum Electrodynamics (QED)

The electron was first hypothesised as an indivisible quantity of charge in 1838 by
Richard Laming, which was then discovered in 1897 by J.J. Thomson [22–24]. In
1926, the word ’photon’ was brought into light by Gilbert Lewis to name Einstein’s
quantised light [25, 26]. Bosons were named after Satyandra Nath Bose by Paul
Dirac for treating photons as indistinguishable particles by deriving Planck’s
radiation law [27–31]. After significant developments in quantum mechanics,
quantum electrodynamics was introduced by Paul Dirac in 1927 [21, 32]. By 1949,
the method of renormalisation was introduced [33–36]. Quantum electrodynamics
(QED) is part of relativistic quantum field theory based on electrodynamics. It
describes the interaction of electrically charged particles with the electromagnetic
field and is mediated by exchanging massless photons. The mathematical framework
is described using Abelian gauge theory. It is based on the U(1) gauge symmetry
group. It is the most precisely tested theory in the Standard Model. The Lagrangian
density for QED is given by

LQED = ψ̄(iγµDµ−m)ψ − 1
4FµνF

µν , (2.2)

where the field ψ denotes the Dirac spinor and ψ̄ adjoint spinor representing
initial state and final state charged fermions such as electrons and muons, while m
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2 Theoretical Background

corresponds to the mass of the fermion. The term Dµ is given by,

Dµ = ∂µ + ieAµ (2.3)

defines the covariant derivative. The covariant derivative maintains local U(1)
gauge invariance by introducing the gauge field Aµ, which corresponds to the
electromagnetic (photon) field. The constant e is the electromagnetic coupling
strength, commonly known as the elementary charge. The field strength tensor Fµν

is,
Fµν = ∂µAν − ∂νAµ (2.4)

which takes the electric and magnetic components of the electromagnetic field into
account [21, 32–35, 37].

2.2.2 Weak Interaction

The weak interaction was first proposed by Enrico Fermi [38] to explain processes
such as beta decay and neutrino scattering. Unlike the massless photon and gluons
that mediate the electromagnetic and strong interactions, the weak interaction is
unique because it violates parity (P) and charge-parity (CP) symmetries [39, 40].
This was followed by the discovery of W and Z bosons (carriers of weak interaction)
[41–44], which were proposed by the Glashow-Weinberg-Salam electroweak theory
(also known as the GWS model) [15, 16]. Since the weak interaction only couples to
left-handed particles, the fermion fields are split into left-handed and right-handed
fermion fields, which can be written as ΨL,R = 1

2(1∓γ5)Ψ. These fields are arranged
in weak isospin doublets I3 = 1

2 and in weak isospin singlets I3 = 0 [45–47]. The
electroweak theory unifies the electromagnetic and weak interactions under a gauge
group. The gauge invariance demands that all fundamental gauge bosons are
massless. But the W and Z bosons were observed to be massive, and simply adding
mass terms breaks the gauge symmetry, which makes the theory non-renormalisable.
The Higgs mechanism was proposed by P. Higgs and F. Englert. In the Higgs
mechanism, vector bosons can acquire mass without breaking gauge invariance
due to spontaneous symmetry breaking of a complex scalar field [17, 48, 49]. The
gauge symmetry SU(2)L ×U(1)Y is spontaneously broken down to U(1)EM via the
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Higgs mechanism. This gives mass to W and Z bosons and therefore answers the
question of why electromagnetism is a long-range interaction and explains why the
weak force has a short range.
The Z boson has a mass of approximately 91.19 GeV and is charge neutral. It
couples to fermions through the electroweak neutral current interaction given by

LNC = g

cos θW

∑
f

f̄γµ(gV − gAγ
5)fZµ, (2.5)

where g is the weak coupling constant, θW is the Weinberg angle, and gV and gA

are the vector and axial-vector couplings.

gV = T3f − 2Qf sin2 θW , gA = T3f , (2.6)

with T3f being the third component of the weak isospin and Qf the electric charge
of the fermion f , and f̄ . The W boson has a mass of 80.385 GeV. It has an electric
charge ±1 and the charged current interaction is described by the Lagrangian,

LCC = g√
2

(ūγµ(1 − γ5)dW+
µ + d̄γµ(1 − γ5)uW−

µ ), (2.7)

the parameter g represents the weak coupling constant, which is associated with the
SU(2)L gauge symmetry. The fields ū and d are the Dirac spinors corresponding
to up-type and down-type quarks. The term γµ represents the gamma matrices
used in the formulation of relativistic currents, while γ5 is employed to isolate
the left-handed chiral components of fermions. The operator (1 − γ5)/2 acts as a
projector, ensuring that only left-handed fermions participate in the interaction.
The physical charged weak bosons W± arise from the linear combinations of the
SU(2)L gauge fields and is given by,

Wµ± = 1√
2

(W 1
µ ∓ iW 2

µ), (2.8)

where W 1
µ and W 2

µ are two of the three weak isospin gauge fields associated with
the SU(2)L group. These charged bosons mediate transitions between up-type and
down-type fermions within the same generation, such as u ↔ d, c ↔ s, and t ↔ b
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[15–17, 21, 50–52].

2.2.3 Quantum Chromodynamics (QCD)

In the Standard Model of particle physics, the theory of quantum chromodynamics
(QCD) describes the strong force, or strong nuclear force. A major development
was the discovery of the proton [53, 54], which gave us the understanding of the
positively charged nucleus, and the discovery of the neutron by James Chadwick
[55]. Before the 1970s we did not know what made the atomic nucleus bind
together. A fundamental strong nuclear force was hypothesised to explain this
[29]. Murray Gell-Mann and George Zweig proposed that protons and neutrons
(known as baryons) could be made up of the elementary particles called quarks.
This was shortly after Gell-Mann’s 1961 formulation of the particle classification
system known as the Eightfold Way or SU(3) flavour symmetry [56, 57]. Then the
reasoning became clear that they are simply just permutations of the subparticles
and their spins. The theory of QCD describes that this interaction is done via
coupling with three different colour charges (red, green, and blue), which is carried
by the quarks and is mediated by the eight massless gauge bosons, which are gluons.
QCD is based on the gauge group SU(3)QCD. The QCD Lagrangian is given by

LQCD = q̄(iγµDµ −mq)q − 1
4G

a
µνG

aµν , (2.9)

where q and q̄ are the quark fields and represent Dirac spinor fields, carrying colour
charge and flavour indices. Dµ is the covariant derivative with gs as the strong
coupling constant and Ga

µν is the gluon field strength tensor which is given by,

Dµ = ∂µ − igsT
aGa

µ (2.10)

in which Ga
µ are the gluon fields, which are vector gauge bosons mediating the

strong interaction.
Ga

µν = ∂µG
a
ν − ∂νG

a
µ + gsf

abcGb
µG

c
ν , (2.11)

where T a represents the generators of the SU(3)C gauge group, these generators
correspond to the Gell-Mann matrices λa. These matrices form the fundamental
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(a) Gluon-gluon fusion.
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q

g

t̄
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(b) Quark-antiquark annihilation.

Figure 2.2: Leading-order Feynman diagrams for top-antitop (tt̄) production in
proton-proton collisions.

representation of the color SU(3)C group, satisfying the commutation relation
given by,

[T a, T b] = ifabcT c (2.12)

where fabc are the structure constants of the SU(3)C algebra [18–20, 58–60].

2.3 tt̄ +X processes

In high-energy proton-proton collision, top-antitop quark pair (tt̄) production is
a QCD process. At leading order, the Feynman diagrams are gluon-gluon fusion
and quark-antiquark annihilation shown in Figure 2.2. Owing to the high mass,
the top quark has a very short lifetime (∼ 5 × 10−25 s), below the timescale of
QCD hadronisation. It then almost exclusively decays through t → Wb before
hadronising, making experimental access to the properties through the kinematics
of the decay product feasible.
In the Standard Model, the top quark decays through the charged weak current
interaction into a W boson together with a bottom quark almost 100% of the time.
Along with tt̄ production, there are other processes where the top-antitop quark
pair is accompanied by an additional boson. These processes are together called
tt̄+X processes, where X is an additional boson like W , Z, Higgs boson (H), or a
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photon (γ). The tt̄+X processes are important because they play an important
role in probing the electroweak couplings of the top quark [11–13, 61].
In the tt̄W process an additional W boson is radiated from an incoming quark line
as shown in Figure 2.3a. In this process, the final state is defined by the decays
of the three W bosons in the event. Two of them are from the decays of the top
quarks, and the third one from associated production. Both W bosons can decay
leptonically to a charged lepton and a neutrino, or hadronically to a quark pair.
When one or two W bosons decay leptonically, the event contains one or two leptons
in the final state. When all three W bosons decay leptonically, the event contains
a final state with three charged leptons, such an event is called a tri-leptonic
event. They typically include electrons or muons, missing transverse momentum
(pmiss

T ) from the undetected neutrinos, and several jets, including b-quark jets. A
completely hadronic final state occurs when all three W bosons decay hadronically.
A semi-leptonic final state occurs when one W boson decays leptonically and the
other two hadronically. Di-leptonic final states are composed of two leptonic decays
and one hadronic decay, and tri-leptonic final states happen when all three W
bosons decay leptonically.
The production of the Z0 boson in association with a top-antitop pair, denoted tt̄Z,
shown in the Figure 2.3d process, serves as a direct probe of the neutral-current
interactions of the top quark. It enables the measurement of the top-Z coupling
and can test for deviations arising from effective operators or new physics scenarios
such as top compositeness or vector-like quarks. In the tt̄Z process, the decay mode
of the Z boson determines the structure of the final state. The Z boson may decay
leptonically into an electron or muon pair, hadronically into a pair of quarks, or
invisibly into a pair of neutrinos. Consequently, the full event may contain multiple
isolated leptons, hadronic jets, or significant missing transverse energy.
The production of a Higgs boson in association with a top-antitop pair, denoted tt̄H
and shown in figure Figure 2.3c, provides a direct measurement of the top-Higgs
Yukawa coupling, which is the strongest fermion-Higgs interaction in the Standard
Model. The top-Higgs coupling is critical to understanding electroweak symmetry
breaking and vacuum stability. The final states of the tt̄H process depend on
the decay class of the Higgs boson. The dominant decay mode is H → bb̄, which
results in a final state containing multiple b-jets. While this mode has the highest
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(c) tt̄H production
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(e) tt̄bb̄ production

Figure 2.3: Feynman diagrams for representative tt̄+X processes considered in
this analysis.
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branching ratio, it also overlaps significantly with QCD backgrounds. The H → γγ

class leads to a final state with two isolated photons and is characterised by a clean
and distinctive signature, albeit with a much lower branching fraction. Another
important decay mode is H → WW ∗, which can contribute to final states with
additional leptons or jets depending on whether the W bosons decay leptonically
or hadronically. Similarly, the decay H → ZZ∗ can produce four-lepton final states
or combinations involving jets and missing transverse energy (Emiss

T ), depending on
the Z decay. Although rare, the H → τ+τ− class may also be included, leading
to leptonic or hadronic tau signatures. These diverse final states from the Higgs
boson, when combined with the decay products of the top quarks, offer a wide
range of topologies.
The tt̄γ process shown in Figure 2.3b, wherein a photon is radiated either in the
production or decay stage of the top quark, provides insight into the electromagnetic
properties of the top quark, such as its electric charge and magnetic moment. This
class is also sensitive to possible anomalous dipole moments or new charged particles
that may modify the photon emission pattern. The presence of a high-pT photon
in the final state makes this class experimentally attractive, though care must
be taken to isolate prompt photons from background sources such as final-state
radiation or photon conversions.
The tt̄bb̄ process corresponds to the production of a top-antitop pair plus an
extra bottom-antibottom quark pair that usually occurs by gluon-gluon fusion
supplemented by gluon splitting, depicted in Figure 2.3e. The importance of the
process in this context comes from the fact that it forms the leading irreducible
QCD background of processes for which a boson decays into bottom quarks, namely
tt̄H (H → bb̄) and tt̄Z (Z → bb̄). Therefore, studying the final state of tt̄bb̄ becomes
important.
Production of a leading top quark pair in association with additional particles,
known collectively as tt̄ + X, is important for testing the Standard Model (SM)
at hadron colliders. The study of these processes provides tests of perturbative
quantum field theory, also measuring the interactions of the top quark with both
gauge and scalar bosons and physics beyond the SM. In practical cases, however,
many classes produce exceedingly similar final states at the detector. Classification
of such final states then becomes essential, as it reveals which processes are
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2.4 Graph Neural Networks

most likely misidentified and provides deeper insight into the underlying physical
properties that create such overlap.

2.4 Graph Neural Networks

Graph Neural Networks (GNNs) present a framework for extracting information
from data organized as graphs, consisting of nodes and edges that embody pairwise
associations. GNNs operate by iteratively aggregating information from within the
local neighbourhood of a given node and updating the node’s representation by
the use of layers from the neural network. This framework finds its best use in
areas such as particle physics data analysis, wherein the particle interactions are
easily presented as a graph. In this project work, two of the most distinguishing
architectures used are those of Graph Attention Networks (GATs) and Graph
Transformers (GTs), whereby each of them utilizes an attention mechanism to
selectively highlight the most important neighbouring nodes at the time of feature
aggregation [62–65].

2.4.1 Graph Attention Network

Graph Attention Networks (GATs) [63, 66] use learnt attention coefficients at train-
ing time in order to fine-tune the traditional message passing framework. In doing
that, the model is able to pay differential attention towards all of the neighbours,
instead of paying attention to each of its neighbours equally. Considering a graph
provided as G = (V,E), by V denoting the set of nodes and by E denoting the
set of edges. At the node-level of representation, each individual node i ∈ V gets
represented by an individual feature vector hi ∈ RF , here F denotes the dimension
of input features applicable towards each individual node.
A GAT layer initially applies a shared linear transformation W ∈ RF ′×F on
each of the features corresponding to each of the nodes, here F ′ is the size of
the projected/hidden feature space. Subsequently, for each edge (i, j) ∈ E, an
unnormalised attention coefficient αij is calculated as follows,

eij = LeakyReLU
(
a⃗⊤[Whi ||Whj]

)
, (2.13)
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where a⃗ ∈ R2F ′ is a learnable vector used to score the concatenated features of the
nodes, and || denotes concatenation. The coefficient eij quantifies the importance of
node j’s features to node i. These coefficients are then normalised using a softmax
function over the neighbourhood N (i) of node i given by,

αij = exp(eij)∑
k∈N (i) exp(eik) . (2.14)

The updated feature representation of node i is computed as a weighted sum of its
neighbours’ features as shown in,

h′
i = σ

 ∑
j∈N (i)

αijWhj

 , (2.15)

where σ is a non-linear activation function such as ReLU. In this project, the
attention mechanism also includes edge features. This variant, often referred to as
edge-aware attention, computes attention coefficients with,

eij = LeakyReLU
(
a⃗⊤[Whi ||Whj ||Weeij]

)
, (2.16)

where eij ∈ RD represents the edge feature vector and We ∈ RF ′×D is a learnable
matrix that transforms the edge features into the same space as the node features.
Here, D is the dimension of edge. This enables the model to condition its attention
not only on node features but also on the characteristics of the interaction between
them. To further enhance the expressiveness and stability of learning, GATs often
employ multi-head attention. This involves running multiple independent attention
mechanisms in parallel and then concatenating their outputs,

h′
i =

∥∥∥K

k=1
σ

 ∑
j∈N (i)

α
(k)
ij W

(k)hj

 , (2.17)

where K is the number of attention heads, each with its own parameters W (k) and
attention coefficients α(k)

ij . This approach helps in capturing diverse interactions
between nodes [63, 66].
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2.4.2 Graph Transformer

Graph Transformers (GTs) [64, 66] generalise the Transformer architecture, origi-
nally developed for natural language processing, to graph-structured data. The
self-attention mechanism in Graph Transformers computes attention weights using
query, key, and value projections. For node i, its query vector is Qi = hiWQ; for
node j, its key and value vectors are Kj = hjWK and Vj = hjWV , respectively.
Here, WQ,WK ,WV ∈ RF ×d are learnable projection matrices, d is the attention
dimension and F is the dimension of node features. The edge feature eij ∈ Rde is
linearly projected using We ∈ R1×de and added to the raw attention score as shown,

αij =
exp

(
Qi·K⊤

j +Weeij√
d

)
∑

k exp
(

Qi·K⊤
k

+Weeik√
d

) . (2.18)

These attention coefficients are used to compute the aggregated message passed to
node i, weighted by the value vectors given by,

mi =
∑

j∈N (i)
αijVj. (2.19)

The resulting vector is then processed by a Feed-Forward Network (FFN), which
typically consists of two linear layers with a non-linearity in between. The updated
node representation is computed using a residual connection followed by layer
normalisation,

h′
i = LayerNorm (hi + FFN(mi)) . (2.20)

In addition to self-attention, Graph Transformers may incorporate structural en-
codings that preserve the underlying graph topology. These encodings include node
degrees, shortest path distances, Laplacian eigenvectors, or learned embeddings
for edge types. They can be added to node features or used to bias the attention
mechanism. By leveraging both node and edge-level information, Graph Trans-
formers provide a highly expressive framework for capturing intricate dependencies
in graph-structured data [67]. In summary, Graph Attention Networks and Graph
Transformers offer approaches for learning from graph data. GATs provide efficient
and adaptive neighbourhood aggregation, especially when local interactions domi-
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nate, while GTs offer a more flexible architecture capable of modelling complex
dependencies. In this project, both architectures were explored and evaluated for
the classification of tt̄+X processes in simulated events.
For graph-level classification tasks, the information contained in the individual
node embeddings must be aggregated into a fixed-size representation of the entire
graph. One common approach is mean pooling, which computes the average of
the node embeddings across the graph. For a graph which has N nodes and node
representations h1, h2, . . . , hN , the pooled graph representation hG is defined as

hG = 1
N

N∑
i=1

hi. (2.21)

This operation produces a permutation-invariant representation that preserves
global information about the graph while ensuring a consistent input size for
subsequent classification layers.
The loss function used is the weighted cross-entropy loss, which is suitable for
multi-class classification problems with class imbalance. In this classification task,
the model is trained using the weighted cross-entropy loss function, which is suitable
for multi-class problems with imbalanced class distributions. For a classification
problem with C classes, the standard cross-entropy loss is defined as

L = −
C∑

c=1
yc log(pc), (2.22)

where yc denotes the true label (equal to 1 for the correct class and 0 otherwise),
and pc is the predicted probability for class c. In the weighted formulation, a
class-specific weight wc is introduced to scale the contribution of each class in the
loss calculation:

Lweighted = −
C∑

c=1
wc yc log(pc). (2.23)
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3 Experimental Setup

The Atlas Detector [10] is known as the largest particle detector in the world and
one of the four major experiments at the Large Hadron Collider (LHC) at Cern.
It is designed to study a broad range of physics phenomena by taking advantage
of the high-energy proton-proton collisions. Today studies from the Higgs boson
and top quark to searches for supersymmetry and dark matter take place at this
detector. As a general-purpose particle detector, Atlas plays a big role in studying
the fundamental constituents of matter and the forces governing their interactions.

The Atlas Detector, being the largest volume detector ever constructed at a
particle collider, stands 46 metres in length and 25 metres in height and weighs
around 7,000 tonnes, as shown in Figure 3.1. Being a symmetric detector, it
is built around the collision point of proton-proton collisions and has high-end
detector technologies designed to detect and identify the different kinds of particles
and measure their momentum, energies, and trajectories, which helps reconstruct
complex final states arising from high-energy collisions.
The detector is organised into several concentric layers, each optimised for a specific
function. These layers include the Inner Detector (ID), which is used for tracking
charged particles; the Electromagnetic and Hadronic Calorimeters, used for mea-
suring energy deposits; and the Muon Spectrometer, which identifies and measures
muons. These subsystems are embedded within a system of powerful magnets that
bend the paths of charged particles, allowing momentum measurements via the
curvature of their tracks.
In the following sections, each of the subsystems of the Atlas detector are described,
focusing on their design, purpose, and contribution to particle reconstruction and
identification.
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3 Experimental Setup

Figure 3.1: ATLAS Detector ©Cern.

Figure 3.2: Diagram of Inner Detector in Atlas Detector ©Cern.

3.1 The Inner Detector

The inner detector is the tracking system situated in the innermost part of the
Atlas Detector, directly closest to the beam pipe. It is used for reconstructing
the trajectories of the charged particles. It is surrounded by superconducting
solenoid magnets which generate a 2 Tesla axial magnetic field which is responsible
for bending the trajectories of the charged particles, allowing precise determination
of the particle momenta and charge by measuring the particle curvature.
The Inner Detector covers a pseudorapidity range of |η| < 2.5 and is made of three
sub-detectors [10].
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3.1 The Inner Detector

3.1.1 Pixel Detector

The Pixel Detector is the innermost detector of the Atlas Inner Detector. It is
located at the closest interaction point of the proton-proton collisions. It provides
the highest granularity and spatial resolution, enabling precise reconstruction of
charged-particle tracks and vertices, including those from heavy-flavour decays.
The system consists of four cylindrical barrel layers, including the Insertable
B-Layer (IBL), and three endcap discs on each side, covering |η| < 2.5 with
radii from 33 mm (IBL) to 122 mm. Each pixel sensor has a typical size of
50 µm × 250 µm, delivering an impact parameter resolution of about 10 µm in the
transverse plane. With over 100 million readout channels, the Pixel Detector is the
most granular Atlas tracking subsystem and is essential for vertexing, pile-up
mitigation, and b-tagging [10].

3.1.2 Semiconductor Tracker (SCT)

The Semiconductor Tracker (SCT), located between the Pixel Detector and
the Transition Radiation Tracker, provides high-precision tracking in both the
barrel and endcap regions. It employs silicon microstrip sensors to measure
charged-particle trajectories in the r-ϕ plane, essential for determining transverse
momentum. The system consists of four cylindrical barrel layers and nine endcap
disks on each side, amounting to over six million readout classs. Each module
comprises pairs of single-sided silicon strips mounted back-to-back at a stereo
angle of 40 mrad, enabling accurate two-dimensional hit reconstruction. With a
typical strip pitch of 80 µm, the SCT achieves a spatial resolution of about 17 µm
in the transverse plane. Covering radii from 299 to 560 mm and operating in the 2
T solenoidal magnetic field, the SCT provides precise momentum measurements
while remaining radiation-hard up to fluences of 2 × 1014 neq/cm2. It complements
the high-granularity Pixel Detector at small radii and the TRT at larger radii,
forming a central element of the Atlas tracking system [10].
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3.1.3 Transition Radiation Tracker (TRT)

The Transition Radiation Tracker (TRT) is the outermost component of the Atlas
Inner Detector and provides both precise charged particle tracking and electron
identification through transition radiation. Positioned outside the Semiconductor
Tracker (SCT), it complements the silicon detectors by adding a large number of
hits per track, improving momentum resolution and track reconstruction in forward
and high-multiplicity regions. The TRT consists of about 300,000 thin-walled
drift tubes, or "straws", each 4 mm in diameter and filled with a Xenon-based gas
mixture. These straws act as drift chambers, giving spatial measurements with a
resolution of about 130 µm in the r-ϕ plane, and are arranged in three barrel layers
and 14 endcap wheels, covering radii from 563 to 1066 mm and pseudorapidities
up to |η| < 2.0. A distinctive feature of the TRT is its ability to detect transition
radiation, emitted when relativistic particles cross boundaries of different dielectric
constants. Radiators of low-density fibres or foils enhance this effect, and the
resulting photons are absorbed in the Xenon gas, producing higher ionisation
signals that allow discrimination between electrons and hadrons [10].
The region outside the Inner Detector in Atlas is occupied by the Outer Detector
system, which are responsible for measuring the particle energies and identifying
muons. These systems complement the high-resolution tracking of the inner detector,
thereby providing near complete coverage of final states produced in proton-proton
collisions. The Outer Detector consists primarily of the calorimeter system and
muon spectrometer, both of which play important part in reconstructing the energy
flow, particle types, and global event kinematics.

3.2 Calorimeter System

The calorimeter system surrounds the Inner Detector and provides hermetic
coverage up to pseudorapidities of |η| < 4.9. It is designed to measure the
energies of electrons, photons, and hadrons, and it is segmented finely in both
the longitudinal and transverse directions to allow shower-shape analysis and
particle identification. A fundamental purpose of the calorimeter system is to
stop incident particles by forcing them to undergo a cascade of interactions with
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3.2 Calorimeter System

Figure 3.3: Diagram of Calorimeter system in Atlas Detector ©Cern.

the dense absorber material. In this way, the particles deposit, ideally, their
entire energy inside the calorimeter volume. The active medium then records
this deposited energy, allowing for a measurement of the particle’s initial energy.
For electromagnetic showers, produced by electrons and photons, the calorimeter
ensures near-complete energy deposition within the electromagnetic calorimeter,
while hadronic showers, being more extended, are measured using both the
electromagnetic and hadronic calorimeters.
In the liquid Argon (LAr) calorimeters, energy deposition by charged particles
produces ionisation electrons in the Argon, which drift under a strong electric
field and are collected by readout electrodes, where the signal is amplified and
digitised. This technology provides high stability, fine granularity, and excellent
linearity of response. In the Tile Calorimeter, which employs plastic scintillator
tiles, the passage of charged particles excites the scintillator molecules, and as
they de-excite they emit visible photons of light. These photons are collected via
wavelength-shifting fibres and guided to photomultiplier tubes (PMTs), which
convert the light signal into an electronic pulse proportional to the deposited
energy.
The electromagnetic calorimeter (ECAL), based on lead absorbers with liquid
Argon as the active medium, employs an accordion-shaped geometry that
ensures complete azimuthal coverage without gaps. It measures the energies of
electrons and photons with high precision and provides essential information for
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reconstructing their directions and identifying electromagnetic showers. Located
around the ECAL, the hadronic calorimeter (HCAL) measures the energy of
strongly interacting particles such as pions, kaons, and jets. In the central
barrel region (|η| < 1.7), the HCAL consists of steel absorbers interleaved with
plastic scintillator tiles, forming the Tile Calorimeter. In the endcap and forward
regions, where particle fluxes are higher, Copper or Tungsten absorbers combined
with liquid Argon are employed. Together, the electromagnetic and hadronic
calorimeters form a system capable of measuring the total transverse energy flow
in an event. They are essential for the reconstruction of jets, the identification of
isolated photons and electrons, and the determination of missing transverse momen-
tum (Emiss

T ), which provides sensitivity to neutrinos and potentially new physics [10].

3.3 Muon Spectrometer

The muon spectrometer is the outermost component of the Atlas detector and
is dedicated to the identification and precise momentum measurement of muons,
which typically traverse the calorimeters with minimal energy loss. Covering the
pseudorapidity range |η| < 2.7 for tracking and up to |η| < 2.4 for triggering,
the system is embedded in large superconducting air-core toroidal magnets. The
magnetic field bends muon trajectories, enabling an independent momentum mea-
surement that dominates at high transverse momenta, while complementing the
Inner Detector at lower momenta.
Muon detection relies on gaseous detectors that convert the passage of muons
into electronic signals through ionisation of the gas medium. Precision tracking is
achieved mainly with Monitored Drift Tubes (MDTs), while Cathode Strip Cham-
bers (CSCs) are employed in the high-rate forward regions. Triggering requires fast
detectors, provided by Resistive Plate Chambers (RPCs) in the barrel and Thin
Gap Chambers (TGCs) in the endcaps, which supply timing and coarse spatial
information to identify the correct bunch crossing.
Together, these technologies provide both accurate track reconstruction and efficient
triggering. In combination with the Inner Detector, the muon spectrometer ensures
excellent muon identification and momentum resolution, which is crucial for a wide

22



3.3 Muon Spectrometer

range of Atlas physics analyses, from Standard Model measurements to searches
for new phenomena.
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4 Monte Carlo Samples and
Machine Learning Methodology

In this study we use Monte Carlo (MC) simulated event samples generated for the
Atlas detector Run-2 at the Large Hadron Collider. The processes are tt̄W , tt̄Z,
tt̄γ, tt̄bb̄, and tt̄H.

4.0.1 Monte Carlo Event Samples and Pre-processing

The MC events come in ROOT [68] format, which was developed by Cern originally
for data analysis. The samples in root format consist of reconstructed physics
objects such as electrons, muons, jets, photons, and missing transverse energy
(Emiss

T ). A custom processing pipeline is created through which each collision event
is transformed into graph-based representations suitable for Graph Neural Network
(GNN) architectures. The complete processing and training workflow is summarised
in Figure 4.1, which illustrates the flow of information from Monte Carlo ROOT
files to the final evaluation and plotting of results.

Object Definitions and Event Selections

The reconstructed physics objects in the Monte Carlo sample are used as inputs for
the event classification. These objects include electrons, muons, jets, photons, and
missing transverse energy (Emiss

T ). Each reconstructed object (electrons, muons,
jets, etc.) has to satisfy an identification and isolation criterion which guarantees
that objects are genuine and have well-measured kinematic properties. Electrons
interact with the detector material and leave a track in the detector; they are
required to have some kinematic requirements and identification selections on the
basis of likelihood-based (LH) identification with LooseLH and TightLH conditions,
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Figure 4.1: Diagram visualising the pipeline of the tt̄+X graph-neural-network
classification, showing dataset conversion, graph construction, model
training, and evaluation.

which are working points that present a certain threshold that reduces contributions
from nearby particles. This is calculated using

LS(B)(x) =
n∏

i=1
PS(B),i

(
xi

)
. (4.1)

Here x is the measured discriminating variable for a candidate object, and PS(B),i

is the probability density function. Crack veto is used to remove electrons in
the calorimeter transition region, which is between the barrel and endcap, where
the detector response is poorly modelled. An isolation criterion has to be put in
place to separate particle tracks and is done with an isolation cone with variable
radius (VarRad) around the particle track, with ’loose’ and ’tight’ as working point
options.
Muons are also required to have some kinematic requirements, identification and
isolation requirements and are reconstructed by combining tracks in the Inner
Detector (ID) with those in the Muon Spectrometer (MS). Along with kinematic
requirements, jets are clustered using particle-flow (EMPFlow) objects using the
anti-kt algorithm with radius parameter R=0.4, a standard jet definition in Atlas.
To separate jets from additional jets coming from the proton-proton interactions,
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Object Kinematics Identification Isolation / PU

Electrons pT > 25 GeV,
|η| < 2.47

Likelihood-based ID (LooseLH,
TightLH), crack veto

Track and
calorimeter
isolation
(Loose/Tight
VarRad)

Muons pT > 25 GeV,
|η| < 2.5

Combined ID+MS tracks,
Medium quality

Track and
calorimeter
isolation
(Loose/Tight
VarRad)

Jets pT > 25 GeV,
|η| < 2.5

anti-kt (R = 0.4), EMPFlow
inputs

Jet Vertex
Tagger (JVT)
and NNJvt for
pile-up
suppression

b-jets pT > 25 GeV,
|η| < 2.5

GN2v01 b-tagger (e.g.
FixedCutBEff 77)

JVT for pile-up
suppression

Photons pT > 25 GeV,
|η| < 2.5

EM shower-shape ID
(Loose/Tight)

Calorimeter
isolation
(Loose/Tight)

Table 4.1: Definitions of reconstructed physics objects and their selection criteria
used in this analysis.

Jet Vertex Tagger (JVT) with its neural network counterpart (NNJvt). The b-jets
are identified using b-tagging, which identifies jets originating from b-quarks using
a neural network (GN2) algorithm with a working point called FixedCutBEff 77,
which means the working point is tuned to 77 % efficiency for true b-jets. Photons
in the Atlas detector are identified by their electromagnetic calorimeter shower
shape ID and Loose/Tight again means different strictness [69–76]. The Table 4.1
and Table 4.2 summarise the object definitions and list the pre-selections.

4.0.2 Graph-based Event Representation

The pipeline begins with converting the n-tuples from ROOT format to HDF5
format. To do that, we take the samples having different Dataset IDs (DSIDs) that
are extracted from file paths with key components. ROOT files contain variable-
length arrays which are flattened, and offsets are stored as HDF5 files. The graphs
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Table 4.2: Event pre-selection requirements for the tt̄+X dataset, including the
common tt̄ baseline and lepton-multiplicity selections.

Region Leptons Jets b-jets
Baseline ≥ 1 b-tag ≥ 1 jet (pT > 25 GeV) ≥ 1

1ℓ = 1 e/µ (pT > 25 GeV) ≥ 4 ≥ 1
2ℓ = 2 e/µ (pT > 25 GeV) ≥ 3 ≥ 1
3ℓ ≥ 3 e/µ (pT > 25 GeV) ≥ 2 ≥ 1

are constructed with each physical object selected as a node which has a set of
features. In this study we used the transverse momentum (pT ), pseudorapidity (η),
azimuthal angle (ϕ), and object-specific features such as b-tagging discriminants
for jets and particle identification information along with its charge for leptons and
photons. In the case of MET, the node features used were the missing transverse
energy Emiss

T and its azimuthal direction ϕMET. The pseudorapidity η and the
fourth feature, reserved for quantities such as the particle identification information
or a b-tagging score, were set to zero.
To make the best of the kinematics present, we used fully connected graphs for
this study. Which means that edges are constructed between all possible pairs of
nodes that are present in an event. This makes sure that every particle (node) in
the event can exchange information using the message passing. Now considering an
edge connecting two nodes i and j, a set of edge features are computed which gives
extra information to the GNN about the relationship between the two particles.
In case of edges that connect two visible particles like jets, leptons, or photons
the features used are the angular distance ∆R and the invariant mass mij. The
angular distance in the η-ϕ plane is defined as

∆R =
√

(∆η)2 + (∆ϕ)2, (4.2)

where ∆η = ηi − ηj and ∆ϕ = ϕi − ϕj. The invariant mass of the two-particle
system,

m2
ij = (Ei + Ej)2 − (p⃗i + p⃗j)2, (4.3)
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is Lorentz-invariant and encodes the combined energy-momentum structure of the
pair. In case of edges between visible particles and the MET node, the features
used are the angular distance to MET, denoted as ∆RMET, and the transverse
mass mT . The angular distance to MET is defined as

∆RMET =
√

(ηobj − ηMET)2 + (ϕobj − ϕMET)2, (4.4)

where the MET vector is treated as an object characterised by its azimuthal angle
ϕMET, and ηMET is set to zero. MET gives the information about the alignment of
visible objects with the missing transverse momentum, which ise usually used to
identify neutrinos. The transverse mass is given by

mT =
√

2pobj
T Emiss

T

(
1 − cos(∆ϕ)

)
, (4.5)

where pobj
T is the transverse momentum of the visible object, Emiss

T is the MET
magnitude, and ∆ϕ is their azimuthal separation. The transverse mass is used
for identifying events like leptonic W → ℓν decays. The diagram of the graph
structure is shown in Figure 4.2.
To build the final event classes for training, tt̄H and tt̄Z(Z → qq̄) events
were separated using parton-level (truth) information. The parton history
of each generated event is inspected to identify the underlying hard process
and to distinguish Higgs decays from hadronic Z decays, which can otherwise
produce very similar final states. The 14 classes chosen for classification were
tt̄(H → bb̄), tt̄(H → WWsemilep), tt̄(H → WWdilep), tt̄(H → WWhad), tt̄(H →
τ+τ−), tt̄(Z → light quarks (Ljs)), tt̄(Z → bb̄), tt̄(Z → µ+µ−), tt̄(Z →
e+e−), tt̄(Z → τ+τ−), tt̄(Z → νν̄), tt̄γ, tt̄W , and tt̄bb̄.

4.0.3 Graph Neural Network Training and Optimisation

In this study we used Graph Attention Network (GATNet) and Graph Transformer
(GT). Models are defined by a set of hyperparameters like the number of input
classes, the hidden layer dimensions, the number of output classes, the dimension-
ality of edge features, the pooling method, and the dropout probability applied
during training.
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Figure 4.2: Event graph used for GNN input. Nodes represent Jet (blue), Photon
(yellow), Lepton (green), and MET (red) with key kinematic features.
Orange edges denote particle-particle links (∆R,minv); lavender edges
denote particle-MET links (∆RMET,mT ).

Graph Attention Network (GATNet)

The GATNet architecture (GATv2Conv) used in this study was determined through
hyperparameter optimisation using the Optuna framework. This optimised model
takes four input features per node. The training parameters are shown in Table 4.3.
Every GAT layer uses ten attention heads. Dropout is used which is a regularising
technique. In this technique, some fraction of neurons are randomly deactivated
in a given layer during each forward pass mechanism. This prevents the network
from relying heavily on certain nodes, which helps the model to learn the overall
patterns. Also, mean pooling is used as the global aggregation function.
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Table 4.3: Summary of key hyperparameters and training settings for the opti-
mised GATNet and GTNet (GTNet) models.

Parameter GATNet GTNet

Hidden units 64, 16 48, 48, 48
Attention heads 10 per layer 12 per layer
Dropout 0.374 0.142
Pooling mean mean
Learning rate 1.03 × 10−4 1.41 × 10−3

Weight decay 3.08 × 10−6 1.68 × 10−3

Batch size 128 128
Epochs (max) 150 150
Loss weighted cross-entropy weighted cross-entropy
Events per class 1.0 × 105 1.0 × 105

Early stopping:
parience 20 20
LR scheduler:
patience ReduceLROnPlateau ReduceLROnPlateau
factor 0.8 0.8

Graph Transformer Network (GTNet)

The GTNet architecture used in this study was determined using hyperparameter
optimisation with the Optuna framework. The training parameters are shown in
Table 4.3. Each GT layer uses 12 attention heads. In addition, mean pooling is
used as the global aggregation function.
For both of the models, we use Adam optimizer [77], which updates the network
parameters during the gradient descent. Both models also use a ReduceLROn-
Plateau scheduler. This is designed to decrease the learning rate by a factor.
During training, the model parameters are periodically saved (checkpointed). After
training is completed, the checkpoint with the lowest validation loss is used for
the final evaluation on the test set. To take care of the imbalance between classes,
a maximum number of events per class can be specified. For this study, graph
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dataset with 100,000 events was constructed from each tt̄+X process, making sure
that all classes are represented with equal amount of statistics. The storing method
of the graph datasets was done by designing a hash based system to guarantee
reproducibility. The classes are defined from dedicated samples for each process,
with the option of applying truth-level selections for separating processes further.
The training uses the weighted cross-entropy loss, this assigns class weights inversely
proportional to their frequencies. This dual strategy makes sure that the model gets
to learn from a balanced dataset. The training is done using the stratified K-fold
cross validation technique [78] with 2 folds. This means that the graph dataset is
split into 2 folds with equal amount of events (graphs). Each fold contains 70% of
the events for training set, 20% for validation set and 10% for test set.

4.0.4 Performance Evaluation

The performance, prediction ability and reliability of the trained models was
performed through an assessment. After training with the Monte Carlo samples of
tt̄+X events, the final models are subjected to checks that test both their internal
convergence and how well they can classify. Model evaluation is done using the
test set.

Training and Validation Monitoring

The convergence behaviour of the GATNet and GTNet models was accomplished
by observing how training losses, validation losses and validation accuracy evolved,
over the full training period with early stopping [79, 80]. The results for the
GATNet are shown in Figure 4.3a, Figure 4.3b, Figure 4.3c and Figure 4.3d.
The training and validation loss curves show a quick decrease during the initial
epochs, followed by a slow plateauing as the models approach convergence. After
40 to 50 epochs the training losses show stabilisation around a value of 2.06 for
both the models with no significant separation between the training and validation
loss curves. This shows us that the networks can learn effectively from the available
data without overfitting.
The validation accuracy shows a similar behaviour. It rises steeply during the
early stages and gradually approaches a plateau. The final accuracy remains stable
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Figure 4.3: Training and validation monitoring for the GTNet model. Subfigures
(a,b) show the evolution of loss and accuracy for Fold 1, and (c,d) for
Fold 2.

during the later epochs around the value of 0.31. This confirms that the optimised
learning rate scheduler and early stopping criteria successfully guide the training
to a well-converged minimum with both architectures. The results for the GTNet
model are shown in Figure 4.4a, Figure 4.4b, Figure 4.4c and Figure 4.4d.

Classification Quality on Test Data

The confusion matrices in Figure 4.5 (GATNet) and Figure 4.6 (GTNet) show the
true and predicted class labels for all tt̄+X classes. Each row shows a true physics
process, and each column shows the predicted class. The diagonal elements in the

33



4 Monte Carlo Samples and Machine Learning Methodology

0 10 20 30 40 50 60

Epoch

2.0

2.1

2.2

2.3

2.4

2.5
Lo

ss
GRAPHTRANSFORMERNET Fold 1 Train Loss
GRAPHTRANSFORMERNET Fold 1 Val Loss

(a) Fold 1 loss

0 10 20 30 40 50 60

Epoch

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

Ac
cu

ra
cy

GRAPHTRANSFORMERNET Fold 1 Validation Accuracy

(b) Fold 1 accuracy

0 10 20 30 40 50 60

Epoch

2.0

2.1

2.2

2.3

2.4Lo
ss

GRAPHTRANSFORMERNET Fold 2 Train Loss
GRAPHTRANSFORMERNET Fold 2 Val Loss

(c) Fold 2 loss

0 10 20 30 40 50 60

Epoch

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

Ac
cu

ra
cy

GRAPHTRANSFORMERNET Fold 2 Validation Accuracy

(d) Fold 2 accuracy

Figure 4.4: Training and validation monitoring for the GTNet model. Subfigures
(a,b) show the evolution of loss and accuracy for Fold 1, and (c,d) for
Fold 2.

confusion matrix show the fraction of correctly classified events per class, and the
off-diagonal elements show misclassified events. The hard confusion matrices are
obtained by applying the argmax function directly to the model’s raw logits output
so that each event is assigned to the class with the highest raw score and then
compared to its true label. The diagonal elements dominate in both the models,
showing that the networks classify correctly by capturing the features. For some
classes, high diagonal values are seen, showing that they have clean signatures,
for example tt̄γ, in which up to about 70 % of the events are correctly identified.
Processes with more complex or overlapping final states, such as tt̄H(τ+τ−) or
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tt̄W , show lower diagonal fractions and larger off-diagonal entries, which shows
confusion between these classes.
The tt̄H process names are given based on the decay products of the associated
boson. For example, tt̄H → WW ∗, lvqq shows a semi-leptonic final state with one
W boson decaying leptonically (ℓν) and the other hadronically (qq).
The classification performance of the trained GATNet and GTNet models can be
further examined by looking at the receiver-operating-characteristic (ROC) curves
and their area-under-curve (AUC) values. For every physics process the multi-class
output of the network is treated in a one-versus-rest fashion. So for a given class
C, all events of C are considered as signal, and all other events are considered as
background. The soft probability assigned to C is then scanned over all possible
thresholds to construct the curve of true-positive rate versus false-positive rate.
The AUC is the integral of this curve and quantifies how often the network assigns
a higher probability to a chosen true class C event than to a randomly chosen
background event.
The ROC plots in Figure 4.7 (GATNet) and Figure 4.8 (GTNet) show steep rises
toward the upper left corner, stating a discriminating power. For both folds of
each model, almost all classes reach AUC values above 0.95, approaching unity
(AUC ≈ 0.99). Classes with more complicated and similar looking final states still
show better AUCs in the range of 0.95 − 0.98.
The precision-recall (PR) curves in Figure 4.9 (GATNet) and Figure 4.10 (GTNet)
show for each of the fourteen tt̄+X processes the change of classification purity
called precision as the selection is loosened to higher signal efficiencies called recall.
On the left of the plot, which shows very low recall, the most confidently classified
events are accepted. In this region precision is close to unity for all classes, because
all of the accepted events truly belong to the target class. The curves then slowly
show lower for some classes as the threshold is loosened, allowing the less certain
events, which shows low precision. In the high-precision, low-recall region for some
classes we see a very high amount of fluctuations. This is a statistical effect and is
because at these tight thresholds only a handful of events pass the selection. Which
means removal of a single event can change the precision in a sharp way and cause
fluctuations. As we go to the higher recall region, more events contribute to the
estimate, and the curves quickly smooth out. The overall position and steepness of
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the curves show differences in the ability of the model to classify successfully. So
the classes like leptonic tt̄Z final states (tt̄(Z → µ+µ−, e+e−)) and tt̄γ show almost
flat curves with average precision (AP) value close to one. This means that these
classes can be identified with high precision even when the threshold is loosened
and a large fraction of their events is retained. And compared to them, classes like
tt̄W and tt̄Z → τ+τ+ reach only AP ≃ 0.4-0.5, which is substantial contamination
once the threshold is relaxed.
With these results and comparing both the folds, one can conclude that both the
network architectures show similar patterns. The differences in both of the folds
are small.

Probability Distributions

In this section we will look at the softmax probability distributions which display
a view of how confidently the models assign each event to its true physics category.
Figure 4.11 (GATNet) and Figure 4.12 (GTNet) show, for several representative
final states. This is calculated by using a softmax function on the model outputs,
which are in the form of logits. On the x-axis we have the predicted probability
which is assigned by the trained network, while the y-axis shows the normalised
count of events for each of the six physics processes considered in the classification
task. Every line is from the output of the different true class and is shown in
a different colour. Here we will discuss five interesting ones; the others can be
seen in the Appendix section. The figures show that the model assigned for every
true class event probability is assigned to be larger than 0.1, which shows that
the model is able to recognise patterns and show good separation capability. The
processes like tt̄(H → bb̄), tt̄(Z → bb̄) and tt̄bb̄ share a common bb̄ final state,
which makes their separation challenging. The signal peaks are broad and extend
higher than p ≃ 0.3, showing good discrimination, but the overlap or confusion
between tt̄(H → bb̄) and tt̄(Z → bb̄) is highly visible. The clean leptonic and
photonic channels tt̄(Z → µ+µ−) and tt̄γ show peaks near unity, which is a good
indication and suggests that the networks assign higher probabilities to most of
these events. The tt̄W class seems to be the most difficult to separate; tt̄W events
in the histogram are between 0.1 and 0.2, suggesting high uncertainty. and only
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rarely extends to larger values.
The probability distributions from the GTNet show similar behaviour. This confirms
that the conclusions are consistent between architectures which highlight that they
are able to learn the underlying physical patterns. GTNet shows good separation
capability. Like GATNet, GTNet shows consistent behaviour for processes like
tt̄(H → bb̄), tt̄(Z → bb̄) and tt̄bb̄ which share a common bb̄. And the clean
leptonic and photonic channels of tt̄(Z → µ+µ−) and tt̄γ also show peaks near
unity. Similarly, the classes such as tt̄W show that they are difficult to separate,
highlighting their similar final state.
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Figure 4.5: Confusion matrices for the GATNet model. Subfigures (a) and (b)
show the normalised classification performance on independent test
data for Folds 1 and 2, respectively.
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Figure 4.6: Confusion matrices for the GTNet model. Subfigures (a) and (b)
show the normalised classification performance on independent test
data for Folds 1 and 2, respectively.
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Figure 4.7: Receiver operating characteristic (ROC) curves for all signal classes
in the tt̄ + X classification. The true positive rate is shown versus
the false positive rate for (a) GATNet fold 1, (b) GATNet fold 2.
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Figure 4.8: Receiver operating characteristic (ROC) curves for all signal classes
in the tt̄ + X classification. The true positive rate is shown versus
the false positive rate for (a) GTNet fold 1, (b) GTNet fold 2.
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Figure 4.9: Precision recall (PR) curves for all signal classes in the tt̄+X classi-
fication. Precision is shown versus recall for (a) GATNet fold 1, (b)
GATNet fold 2.
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Figure 4.10: Precision recall (PR) curves for all signal classes in the tt̄ + X
classification. Precision is shown versus recall for (a) GTNet fold 1,
(b) GTNet fold 2.
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(d) P (tt̄(Z → µ+µ−))
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Figure 4.11: Softmax distribution of predicted class probability P (class) from the
GATNet for events with the indicated true label.
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Figure 4.12: Softmax distribution of predicted class probability P (class) from the
GTNet for events with the indicated true label.
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5 Results and Conclusions

In the performance evaluation, the model demonstrated good separation capability,
and the model was able to learn the underlying physical patterns of different
classes from their final state. From these separation capabilities, one can study
which observables can be used to discriminate the final states and act as effective
indicators for distinguishing these final states from each other.
The tt̄γ class is the best-performing class. This class involves a top-antitop pair
production in association with a photon, which leads to final states involving two
W bosons and two b-jets along with this associated photon (γ). The defining
experimental feature of this class is a single isolated energetic photon reconstructed
in the electromagnetic calorimeter, typically with large transverse momentum
due to the production of the photon from the hard scattering process. These
characteristics act as an indicator for the model to separate it from the other classes
and explain why the models achieve relatively high classification accuracies for this
class, as shown in Figure 4.5 and Figure 4.6. The softmax probability distribution
in Figure 4.11e for GATNet and Figure 4.12e for GTNet shows P (tt̄γ) across all
the classes. The model assigned tt̄γ softmax probability extends from the range
of 0.1 to 0.9, with the softmax probabilities of the other classes ranging from 0
to 0.2. This is reflected in the ROC curves from GAT and GT in Figure 4.7 and
Figure 4.8 with AUC score close to unity. The PR curve shown in fig. 4.9 for
GATNet and fig. 4.10 for GTNet is consistently smooth with high precision showing
flat behaviour ranging from low recall to high recall. This suggests that relaxing
thresholds do not impact classification quality due to the clean features separating
it from the rest of the classes. Hence, the defining experimental feature of this class
is therefore a single isolated energetic photon reconstructed in the electromagnetic
calorimeter, typically with large transverse momentum.
Next in line is the tt̄(Z → µ+µ−) class. In this class, the Z boson produces
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5 Results and Conclusions

a pair of two oppositely charged muons along with a tt̄ pair. The presence of
Z → µ+µ− results in a clean isolated signal of two oppositely charged muons with
high transverse momentum. The combined invariant mass of these muons is close to
the Z pole mass. The muons identified based on the muon quality requirements with
reconstruction using the Muon Spectrometer and Inner Detector sets it apart from
the tt̄(Z → e+e−) class. The confusion matrix in Figure 4.5 and Figure 4.6 show
50% to 70% of the events correctly classified as tt̄(Z → µ+µ−). The presence of
muons in other classes contributes to the misclassification of this class. The softmax
probability distribution in Figure 4.11d and Figure 4.12d shows P (tt̄(Z → µ+µ−))
across all the classes. The model assigned P (tt̄(Z → µ+µ−)) softmax probability
extends from the range of 0.1 to 1, with the softmax probabilities of the other classes
ranging from 0 to 0.3, with tt̄(H → WW ∗ → lνlν) (ranging from 0 to 0.3) showing
a minor overlap in the lower end ranging from 0.1 to 0.3. The tt̄(Z → µ+µ−)
process shows a peak at 1, showing model confidence for separating this class. This
is reflected in the ROC curves from GAT and GT in Figure 4.7 and Figure 4.8
with AUC scores close to unity. The PR curve is consistently smooth with high
precision, showing flat behaviour ranging from low recall to high recall. The curve
starts dipping at a recall of 0.6. This suggests that thresholds that correspond to
recall values below 0.6 do not impact classification quality due to the clean physical
features separating it from the rest of the classes.
The tt̄(Z → e+e−) class shows similar performance to tt̄(Z → µ+µ−) due to the
similarity in physical properties. In this class the Z boson produces an electron-
positron pair along with a tt̄ pair. The presence of Z → e+e− results in a clean
isolated signal of an electron-positron pair with high transverse momentum from
the hard scattering. The electrons and positrons identified based on their tracks
in the inner detectors and energy depositions in the electromagnetic calorimeter
set this class apart from the tt̄(Z → µ+µ−) class. The invariant mass of these
electron-positron pair lies close to the Z pole mass, like the previous class. The
confusion matrix in Figure 4.5 and Figure 4.6 shows 40% to 50% of the events to
be correctly classified as tt̄(Z → e+e−). The presence of an electron-positron pair
in other classes leads to misclassification of this channel. The softmax probability
distribution in Figure 4.11e and Figure 4.12e shows P (tt̄(Z → e+e−)) across all the
classes. The model assigned P (tt̄(Z → e+e−)) softmax probability extends from
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the range of 0.1 to 1, with the softmax probabilities of the other classes ranging
from 0 to 0.3, with tt̄(H → WW ∗ → lνlν) (ranging from 0 to 0.3) showing a minor
overlap in the lower end ranging from 0.1 to 0.3. The tt̄(Z → e+e−) process shows
a peak at 1, showing model confidence for separating this class. This is reflected in
the ROC curves from GAT and GT in Figure 4.7 and Figure 4.8 with AUC score
close to unity. The PR curve is consistently smooth with high precision, showing
flat behaviour ranging from low recall to high recall. The curve starts dipping at
a recall of 0.4. This suggests that thresholds corresponding to the recall values
below 0.4 do not impact classification quality due to the clean physical features
separating it from the rest of the classes. But it does have minor overlap with other
classes having similar final states.
In the tt̄(Z → bb̄) class, the Z boson decays into a pair of bottom quarks, adding
two additional b-jets to the two already present from the top decays. The presence
of a high b-tag score and a combined bb̄ invariant mass close to the Z pole mass
and ∆Rbb̄ helps it to be separated from the other classes. The network can exploit
correlations in b-tag scores and reconstructed invariant masses near the Z-boson
mass to enhance discrimination. The confusion matrix shows that around 30% of
these events were classified correctly as tt̄(Z → bb̄). But this class shows a high
amount of confusion of this class with tt̄(H → bb̄) and tt̄bb̄. This is due to the
physical similarities of these processes. These processes have additional b-jets along
with a tt̄ pair. The distributions of softmax probabilities are shown in Figure 4.11b
and Figure 4.12b shows broadly distributed tt̄Z → bb̄ with a clear overlapping
distribution of tt̄(H → bb̄). The tt̄(Z → bb̄) distribution ranges from 0.1 to 1
and shows clear separation capability from other classes distributed from 0 to 0.5
(considering tt̄(H → bb̄)). The ROC curves show good separation with high AUC
score. The PR curve shows no fluctuations in the high-precision and low-recall
region. The curve takes a steep drop at 0.3 with a medium AP score. This suggests
that the separation power of this class drops highly at thresholds corresponding
to the recall values above 0.3. The misclassification of the tt̄(Z → bb̄) process can
be studied by examining whether the model classifies it based on the combined
invariant mass and ∆R of the b-jets. This can be seen in Figure 5.1 which shows
the combined mbb̄ and ∆Rbb̄ distributions from Z boson decay, in which the b-jets
are ∆R matched with the parton-history (truth). In Figure 5.1a the invariant mass

47



5 Results and Conclusions

50 100 150 200 250 300
mbb [GeV]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

D
en

si
ty

×10 2 Invariant Mass

ttZ bb true [88220]
ttZ bb misclassified as ttH bb [63732]
mZ
mH

0 1 2 3 4 5
Rbb

0.0

0.1

0.2

0.3

0.4

0.5

0.6

D
en

si
ty

R

ttZ bb true [88220]
ttZ bb misclassified as ttH bb [63732]

(a) tt̄(Z → bb̄) misclassified as tt̄H → bb̄

50 100 150 200 250 300
mbb [GeV]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

D
en

si
ty

×10 2 Invariant Mass

ttZ bb true [88220]
ttZ bb misclassified as ttbb [11347]
mZ
mH

0 1 2 3 4 5
Rbb

0.0

0.1

0.2

0.3

0.4

0.5

0.6

D
en

si
ty

R

ttZ bb true [88220]
ttZ bb misclassified as ttbb [11347]
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Figure 5.1: Distributions of the invariant mass mbb̄ and angular separation ∆Rbb̄

of the two truth-matched b-jets from Z boson decays in correctly
classified tt̄(Z → bb̄) events and those misclassified as (a) tt̄(H → bb̄)
or (b) tt̄bb̄.

of the bb̄ (mbb̄) from tt̄(Z → bb̄) peaks around mZ , and the tt̄(Z → bb̄) events that
are misclassified as tt̄(H → bb̄) events show a broader peak. The ∆Rbb distributions
show different characteristics in the misclassified events. Similarly, the Figure 5.1b
shows tt̄(Z → bb̄) misclassified as tt̄bb̄.
The tt̄(H → bb̄) class shows similar behaviour in the confusion matrix, ROC and PR
curve. Its final state contains two b-quarks from the Higgs boson and two additional
b-quarks from the top decays, with light jets and leptons originating from the W
bosons. The softmax probability distribution in Figure 4.11a and Figure 4.11b
shows similar behaviour. The invariant mass of b-jet pairs peaks near the Higgs
boson mass shown in Figure 5.2. The tt̄(H → bb̄) events that are misclassified as
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Figure 5.2: Distributions of the invariant mass mbb̄ and angular separation ∆Rbb̄

of the two truth-matched b-jets from Z boson decays in correctly
classified tt̄(H → bb̄) events and those misclassified as (a) tt̄(Z → bb̄)
or (b) tt̄bb̄.

tt̄(Z → bb̄) events show a shift in the invariant mass distribution near the Z mass
and show a ∆Rbb distribution similar to ∆Rbb from true tt̄Z → bb̄ in Figure 5.1.
The tt̄(H → bb̄) events that are misclassified as tt̄bb̄ show a continuous invariant
mass distribution but show a ∆Rbb distribution similar to the ∆Rbb distribution
from true tt̄bb̄ in Figure 5.3.
The tt̄bb̄ class shows a different behaviour since it has no resonance in invariant
mass. The tt̄bb̄ process produces a top-antitop pair accompanied by an additional bb̄
pair from QCD radiation. The tt̄bb̄ class shows around 22% as correctly classified as
tt̄bb̄ in the confusion matrix. But it shows better behaviour in the ROC curve with
high AUC and PR curves with high AP. In the softmax probability distribution

49



5 Results and Conclusions

50 100 150 200 250 300
mbb [GeV]

0.0

0.2

0.4

0.6

0.8

1.0

D
en

si
ty

×10 2 Invariant Mass

ttbb true [295853]
ttbb misclassified as ttH bb [151530]
mZ
mH

0 1 2 3 4 5
Rbb

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

D
en

si
ty

R

ttbb true [295853]
ttbb misclassified as ttH bb [151530]

(a) tt̄bb̄ misclassified as tt̄(H → bb̄)

50 100 150 200 250 300
mbb [GeV]

0.0

0.2

0.4

0.6

0.8

1.0

D
en

si
ty

×10 2 Invariant Mass

ttbb true [295853]
ttbb misclassified as ttZ bb [98546]
mZ
mH

0 1 2 3 4 5
Rbb

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

D
en

si
ty

R

ttbb true [295853]
ttbb misclassified as ttZ bb [98546]

(b) tt̄bb̄ misclassified as tt̄(Z → bb̄)

Figure 5.3: Distributions of the invariant mass mbb̄ and angular separation ∆Rbb̄

of the two truth-matched b-jets from Z boson decays in correctly
classified tt̄bb̄ events and those misclassified as (a) tt̄(H → bb̄) or (b)
tt̄(Z → bb̄).

tt̄bb̄ shown in Figure 4.11c and Figure 4.12c has a relatively narrow peak from 0.1
to around 0.4, with rest of the classes ranging from 0 to 0.2. The Figure 5.3 shows
similar behaviour.
In the semi-leptonic tt̄(H → W+W− → ℓνqq) class, the Higgs boson decays into a
W+W− pair, and one W of the Higgs boson decays leptonically and the other one
decays hadronically. This makes this class very complex. This means along with
the tt̄ decay products, there is a Higgs boson decaying into semi-leptonic WW ∗

out of which at least one W must be off-shell since the Higgs boson mass is smaller
than twice the W mass. This final state hence has one lepton with high transverse
momentum, Emiss

T and two light quark jets. In the confusion matrix, this class
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shows around 20% of the correctly classified events as tt̄(H → W+W− → ℓνqq).
The softmax distribution in the Appendix Figure 6.1a and Figure 6.3a shows a
relatively narrow peak between 0.1 and 0.4. The rest of the distributions from other
classes overlap significantly and are situated further than 0. These classes include
tt̄(H → W+W− → ℓνℓν), tt̄(H → W+W− → qqqq), tt̄(H → ττ), tt̄(Z → Ljs)
and tt̄(Z → ττ). This is due to combinatorial ambiguities in which W bosons from
top quarks decay and τ lepton decays are confused with W bosons decayed from
Higgs bosons. This can be seen in the PR curve, which shows a poor AP score and
fluctuations at low recall values with an instant drop in the curve as recall increases.
The relaxing threshold introduces misclassified events. But at high thresholds there
is good separation against the rest, which explains the ROC curve with high AUC
score. Similarly, tt̄(H → W+W− → ℓνℓν), tt̄(H → W+W− → qqqq), tt̄(H → ττ),
tt̄(Z → ljs) and tt̄(Z → ττ) have major overlaps due to combinatorial ambiguities,
with tt̄(H → W+W− → ℓνℓν) having better separation and tt̄(H → ττ) having
the worst separation among all classes shown in the Appendix 6.
The tt̄(Z → νν) channel has two additional neutrinos originating from Z boson
decay. This results in a large Emiss

T . The confusion matrix shows around 30%
correctly classified as tt̄(Z → νν). The tt̄W is the most confused class in the
confusion matrix. The PR curve shows similar behaviour to tt̄(H → ττ). The
associated W boson can decay leptonically and hadronically. This hadronically
decaying W boson results in two jets. The combined invariant mass is close to the
W boson mass. The W boson mass is close to Z boson, which also decays to two
jets. This causes tt̄W to be misclassified as tt̄Z → Ljs (light quarks). This is seen
in the softmax probability distribution in Figure 4.11f and Figure 4.12f.
This work has demonstrated the application of Graph neural networks to the
multi-class classification of tt̄ + X processes in Atlas. A complete end-to-end
pipeline was built. Both Graph Attention Network and Graph Transformer show
capabilities of separating tt̄+X final states. The model’s performance shows which
observables help separate final states successfully. This shows where the future of
experimental analysis will gain most from such neural networks.
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(d) tt̄(H →τ+τ−)

Figure 6.1: Appendix: normalised distributions of GATNet Fold-1 predicted class
probability P (class) for the remaining classes. Each panel shows P (c)
for events whose true label is c.
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(h) tt̄(Z →νν̄)

Figure 6.1: Appendix (continued): normalised distributions of GATNet Fold-1
predicted class probability P (class) for the remaining classes. Each
panel shows P (c) for events whose true label is c.
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(d) tt̄(H →τ+τ−)

Figure 6.2: Appendix: normalised distributions of GATNet Fold-2 predicted class
probability P (class) for the remaining classes. Each panel shows P (c)
for events whose true label is c.
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(g) tt̄(Z →τ+τ−)

0.0 0.2 0.4 0.6 0.8 1.0
P(ttZ )

0.0

0.1

0.2

0.3

0.4

0.5

0.6

N
or

m
al

iz
ed

 C
ou

nt

Probability Distribution for ttZ

ttH bb
ttH W + W qq
ttH W + W
ttH W + W qqqq
ttH +

ttZ Ljs
ttZ bb
ttZ +

ttZ e + e
ttZ +

ttZ
tt
ttW
ttbb

(h) tt̄(Z →νν̄)

Figure 6.2: Appendix (continued): normalised distributions of GATNet Fold-2
predicted class probability P (class) for the remaining classes. Each
panel shows P (c) for events whose true label is c.

64



0.0 0.2 0.4 0.6 0.8 1.0
P(ttH W + W qq)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

N
or

m
al

iz
ed

 C
ou

nt

Probability Distribution for ttH W + W qq

ttH bb
ttH W + W qq
ttH W + W
ttH W + W qqqq
ttH +

ttZ Ljs
ttZ bb
ttZ +

ttZ e + e
ttZ +

ttZ
tt
ttW
ttbb

(a) tt̄(H →WW →ℓνqq)

0.0 0.2 0.4 0.6 0.8 1.0
P(ttH W + W )

0.0

0.1

0.2

0.3

0.4

0.5

0.6

N
or

m
al

iz
ed

 C
ou

nt

Probability Distribution for ttH W + W

ttH bb
ttH W + W qq
ttH W + W
ttH W + W qqqq
ttH +

ttZ Ljs
ttZ bb
ttZ +

ttZ e + e
ttZ +

ttZ
tt
ttW
ttbb
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(d) tt̄(H →τ+τ−)

Figure 6.3: Appendix: normalised distributions of GTNet Fold-1 predicted class
probability P (class) for the remaining classes. Each panel shows P (c)
for events whose true label is c.
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(f) tt̄(Z →e+e−)
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(g) tt̄(Z →τ+τ−)
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(h) tt̄(Z →νν̄)

Figure 6.3: Appendix (continued): normalised distributions of GTNet Fold-1
predicted class probability P (class) for the remaining classes. Each
panel shows P (c) for events whose true label is c.
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(d) tt̄(H →τ+τ−)

Figure 6.4: Appendix: normalised distributions of GTNet Fold-2 predicted class
probability P (class) for the remaining classes. Each panel shows P (c)
for events whose true label is c.
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Figure 6.4: Appendix (continued): normalised distributions of GTNet Fold-2
predicted class probability P (class) for the remaining classes. Each
panel shows P (c) for events whose true label is c.
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Annex: Declaration on the use of
ChatGPT and comparable tools in
the context of examinations

In this paper, I have used ChatGPT or another AI as follows.:

□ not at all

□ during brainstorming

□ when creating the outline

□ to write individual passages, altogether to the extent of % of the
entire text

□ for the development of software source texts

□ for optimising or restructuring software source texts

□ for proofreading or optimising

□ further, namely:

I hereby declare that I have stated all uses completely. Missing or incorrect
information will be considered as an attempt to cheat.

Place/Date: Signature:
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Erklärung nach §17(9) der Prüfungsordnung für den Bachelor-Studiengang
Physik und den Master-Studiengang Physik an der Universität
Göttingen:
Hiermit erkläre ich, dass ich diese Abschlussarbeit selbständig
verfasst habe, keine anderen als die angegebenen Quellen und
Hilfsmittel benutzt habe und alle Stellen, die wörtlich oder
sinngemäß aus veröffentlichten Schriften entnommen wurden,
als solche kenntlich gemacht habe.
Darüberhinaus erkläre ich, dass diese Abschlussarbeit nicht,
auch nicht auszugsweise, im Rahmen einer nichtbestandenen
Prüfung an dieser oder einer anderen Hochschule eingereicht
wurde.

Göttingen, den 7. November 2025

(Clinton Gonsalves)


	1 Introduction
	2 Theoretical Background
	2.1 Particle Content
	2.1.1 Fermions
	2.1.2 Bosons

	2.2 Gauge Structure of the Standard Model
	2.2.1 Quantum Electrodynamics (QED)
	2.2.2 Weak Interaction
	2.2.3 Quantum Chromodynamics (QCD)

	2.3 ttbar+X processes
	2.4 Graph Neural Networks
	2.4.1 Graph Attention Network
	2.4.2 Graph Transformer


	3 Experimental Setup
	3.1 The Inner Detector
	3.1.1 Pixel Detector
	3.1.2 Semiconductor Tracker (SCT)
	3.1.3 Transition Radiation Tracker (TRT)

	3.2 Calorimeter System
	3.3 Muon Spectrometer

	4 Monte Carlo Samples and Machine Learning Methodology
	4.0.1 Monte Carlo Event Samples and Pre-processing
	4.0.2 Graph-based Event Representation
	4.0.3 Graph Neural Network Training and Optimisation
	4.0.4 Performance Evaluation

	5 Results and Conclusions
	6 Appendix

