
Beyond classical Exponential Analysis:

Generalizations, Connections and Applications.

Exponential analysis might sound remote, but it touches our lives in many surprising ways
[8], even if most people are unaware of just how important it is. For example, exponential
functions with real exponents are used to portray relaxation, chemical reactions, radioac-
tivity, fluid dynamics, heat transfer. A substantial amount of effort in the field of signal
processing is essentially dedicated to the analysis of exponential functions whose exponents
are complex. Moreover, the analysis of exponential functions whose exponents are very
near each other is directly linked to superresolution, which is a hot topic in both 1-d signal
processing and 2-d or 3-d image processing [2, 10].

The classical problem of exponential analysis in one variable is a nonlinear data fitting
problem. It is termed an inverse problem because it consists in extracting an exponen-
tial model’s linear and nonlinear parameters from a limited number of observations of the
model’s behaviour. A discrete eigenfunction property of the exponential function allows
to split the problem into two parts, one of which is delivering the nonlinear parameters as
generalized eigenvalues and the other one the linear coefficients from a structured linear
system. Input to both the generalized eigenvalue problem and the structured linear system
are samples taken at equidistant points in the domain. Inverse problems have a tendency
to be numerically sensitive, but as explained below, a possibility exists to deal with this.

Since exponential models are vital in the description of physical as well as biological phe-
nomena, their analysis is crucial. Though several generalizations of exponential analysis
have been studied in the past decades [9, 7, 1, 11, 12, 14, 13], a full-blown generaliza-
tion of the theory is lacking and the multivariate problem statement is far less understood
and developed. The common bottleneck of multidimensional problems is that when the
dimensionality increases, the amount of data needed to support a reliable result often grows
exponentially with the dimensionality. This phenomenon is also referred to as the curse of
dimensionality. For example, 100 evenly spaced sample points suffice to sample a unit inter-
val uniformly with a distance of 0.01 between the points. However, an equivalent sampling
of a 10-dimensional unit hypercube with a lattice spacing of only 0.01 between adjacent
points requires 1020 or a gazillion number of sample points.

Only in 2017, the UAntwerpen (UA) research group “Computational Mathematics (CMA)”
developed a method for exponential analysis which does not suffer from the curse of di-
mensionality [6]. It can actually solve the multidimensional problem from the theoretical
minimum number of samples if the data are noisefree. Another great (EU and US patented)
UA-CMA breakthrough is the ability to recover signals from sub-Nyquist sampling [4, 5],
meaning from much coarser sampling than requested by the fundamental Nyquist theo-
rem, thereby opening up a whole new world of applications while improving the numerical
conditioning of this inverse problem.

Exponential analysis is closely related to tensor decomposition in multilinear algebra, sparse
interpolation from computer algebra, and Padé approximation from rational approximation
theory [3]. Despite the fact that these seemingly unrelated and diverse topics are very
intertwined, many connections remain unexplored.

We are confident that a combination of these novel possibilities can provide essential con-
tributions to antenna design, seismic data processing, peak fitting in analytical chemistry,
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direction of arrival problems, radar imaging, the marine and transportation sectors, trajec-
tory optimisation in repetitive tasks, and much more. We have therefore started up research
projects in the mentioned application domains.
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