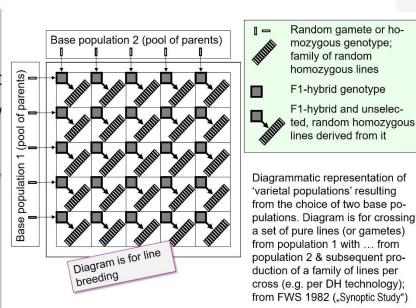

CiBreed Retreat Oct. 2024 apl. Prof. Dr. Wolfgang Link Status & Current Research in the Division of Plant Breeding Methodology


PUBLICATIONS RESEARCH TEACHING NEWS & ANNOUNCEMENTS HISTORY OF THIS CHAIR AND DIVISION PEOPLE

> **Q** SEARCH DEUTSCH

Division of Plant Breeding Methodology

Random gamete or homozygous genotype; family of random homozygous lines

F1-hybrid genotype F1-hybrid and unselected, random homozygous lines derived from it

Groups) within the Department of **Crop Sciences**

Here is the hyperlink to CiBreed

Here are the hyperlinks to jump to

the further Divisions (Working

We are, depending on how you count, 15 team members. Office is administrated by E. Kistner.

Division of Plant Breeding Methodology, October 2024

	Technica	al Staff	
Kaufmann, Dietrich*	26785		dkaufma@agr.uni-goettingen.de
Wiedenroth, Svenja	26785		svenja.wiedenroth@uni-goettingen.de
Yaman, Sonja	19739; 26785	sonja.yaman@uni-goettingen.de	
Not yet identified		24369	Head of the Division
Link, Wolfgang	apl. Prof. Dr.	24353	wlink@gwdg.de
Zumbach, Birgit	Dr.	25764	birgit.zumbach@uni-goettingen.de
Kluth, Christian	Dr.	24360	ckluth@gwdg.de
Brünjes, Lisa	Dr.	24379	lbruenj@uni-goettingen.de
	PhD Stu	Idents	
Aiyesa, Leke Victor	M.Sc.	24379	lekevictor.aiyesa@uni-goettingen.de
Laugel, Henri	M.Sc.	24355	henri.laugel@uni-goettingen.de
Osatohanmwen, Bright E.	M.Sc.	24355	bright.osatohanmwen@uni-goettingen.de
Tost, Mila	M.Sc.	24355	mila.tost@agr.uni-goettingen.de
Windhorst, Alex	M.Sc.	-	alex.windhorst@uni-goettingen.de
Azadeh, Hassanpour	M.Sc.	24355	azadeh.hassanpour@uni-goettingen.de
Quentin, Burandt	M.Sc	24355	quentin.burandt@uni-goettingen.d

*D. Kaufmann, Senior Technician, is 50% 'here' and 50% in the Division of Crop Plant Genetics

2

This Division offers **modules** at BSc level, MSc level, PhD level. For Agricultural Science, Crop Protection, integrated PAB, GFA.

Bachelor

- > Pflanzenbau und Pflanzenzüchtung (Nr. 740372)
- > Wissenschaftliches Arbeiten und professionelles Präsentieren in der Pflanzenproduktion (Nr. 740119)
- > Experimentelle Pflanzenzüchtung (Nr. 740669)
- > Spezielle Pflanzenzüchtung (Nr. 740161)
- > Pflanzenbau, Pflanzenzüchtung und Graslandwirtschaft (Nr. 740969
- Planung und Auswertung experimenteller Bachelor-Arbeit in Nutzpflanzenwissenschaften (Nr. 740949)
- > Datenmanagement, Versuchsplanung und graphische Darstellung mit Excel (Nr. 740919)

The Division offers modules at BSc level, MSc level, PhD level. For Agricultural Science, Crop Protection, integrated PAB, GFA.

Master

- > Genetische Grundlagen der Pflanzenzüchtung (Nr. 740053)
- > Genome Analysis & Appl. of Markers in Plant Breeding (Nr. 740047
- > Plant Breeding Methodology and Genetic Resources (Nr. 740411)
- > Quantitative Genetics and Population Genetics (Nr. 740856)
- > Breeding Schemes and Programs in Plant and Animal Breeding (Nr. 740885
- > Journal Club: Evolutionary Genetics and Breeding (Nr. 740914)
- Selection Theory, Design and Optimisation of Breeding Programs (Nr. 740815)
- Planung und Auswertung experimenteller Master-Arbeit in Nutzpflanzenwissenschaften (Nr. 740948)
- > Practical Statistics and Experimental Design in Agriculture (Nr. 740690)
- > Methodisches Arbeiten: Versuchsplanung und –auswertung (Nr. 740023)

At BSc level, MSc level, PhD level.

PhD

> New Areas in Plant Breeding PhD (Nr. 740458)

We modernise the basic content of our plant breeding courses and prepare onlinecompatibility - still working on it. **Quentin Burandt: Plant Breeding Basics** Wolfgang Link: Population & Quantitative Genetics & Plant Breeding Methodology

Plant Breeding Basics

An ILIAS-based self-learning module; especially for those starting the iPAB program. If your BSc education in genetics and plant breeding has not well enough prepared you for the iPAB MSc program, then you invest 5 -10 hours here and make up for what is missing. ►►► Start in October 2024 ☺

Plant Breeding: Population and Quantitative Genetics and Breeding Methodology

A sequence of N>32 chapters (18-24 pages each), based on audio-enriched PowerPoint. A streamlined, coherent, compilation of two MSc modules (Nr. 740053, Nr. 740411)

> Plant Breeding Methodology > Genetic Principles of Plant Breeding

We are involved in several projects, acquired by us (TB, WL, LB, QB) or in cooperation

		Fu	nd acqu	ired by	Pro	oject con	duct by		
N	us	coope- ration	others	us	coope- ration	others	Scientist		
	2	+			+			HL,AW	
	3	+				+		VA,MT,BO	March March 199
	1		+		+			LB	
	1		+ +					QB	
	2			+		+		BZ	
	1		+				+	AH	
	Σ=10								

Research of Birgit Zumbach. These two projects belong to the Divison of Crop Plant Genetics

- Fungal disease resistance mapping exploring cross-kingdom: RNA interference in sugar beet (FUNBEET)
- → Acquire fundamental understanding of pathogenic interactions between fungi and crops based on transcriptome analysis
- Prepare joint DFG project application by the company Strube Research and the Division Crop Plant Genetics

EU-Project **CONSERWA** https://conserwa.eu Evidence-based support for transition to agroecological weed management in different farming systems and European regions

→ Arrange group interviews/discussions with farmers and governmental advisors

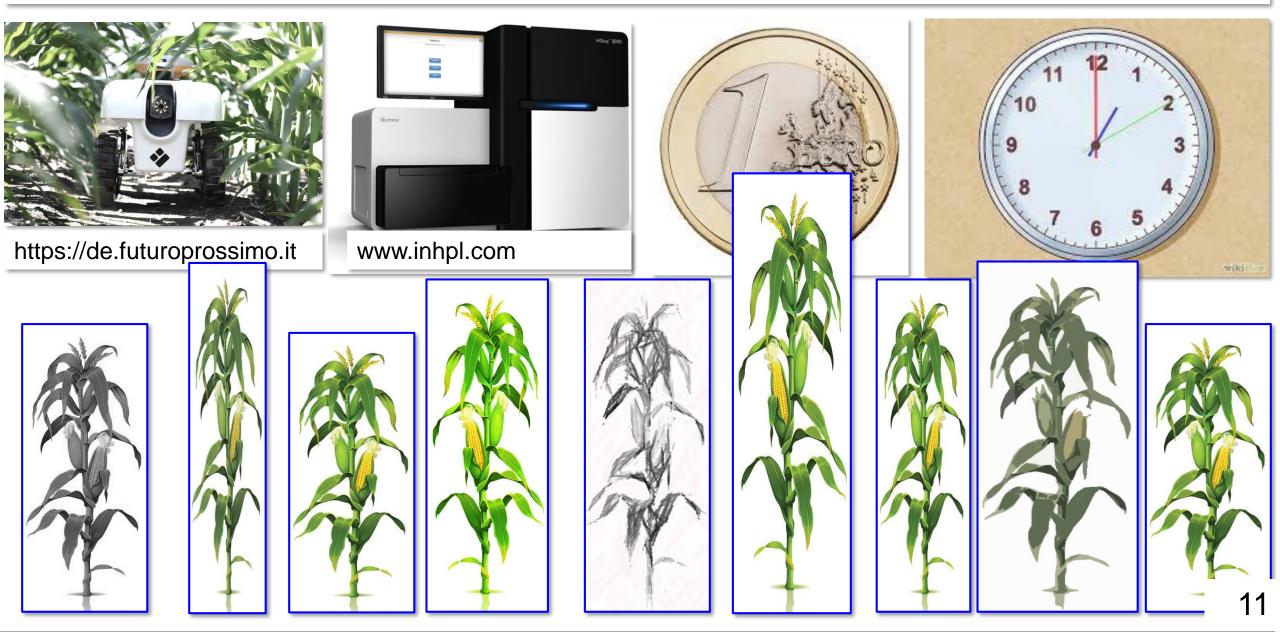
Source: https://www.strube.net/global/products/sugarbeet/cultivation-lexicon/diseases-andpests/cercospora

The DNPW budget for PostDocs is invested here to develop a Competetive & Innovative Research Project. Current target orientation:

- Breeding Pea for Vegetarian/Vegan Human diets
- Protein content, amino acid composition, mineral content

FABALOUS Faba bean abiotic stress tolerance for improved yield stability

- BMBF (February 2025 January /2029), a project on faba bean, Vicia faba
- Multiple stresses at phenotypic, molecular, metabolic levels
 → Drought, Heat, Uromyces, Botrytis
- 15 project partners (Coordinator: SchießI-Weidenweber, Universität Giessen)


Göttingen Work Packages

- Phenotyping stress response to heat & drought in rainout shelters; phenotypic data for systems biology and metabolomics
- Phenotyping pollen characteristics with Impedance Flow Cytometry
- Effects of abiotic stress on pollinator activity

TB: "Shorten maize breeding cycle by training GP model from phenotype data of individuals (instead of plot-based entries)"

Shorten maize breeding cycle by training GP model from phenotype data of individuals (instead of plot-based entries). Prediction ability: Days to Anthesis (0.85), Grain Yield (0.50). Bayesian Ridge Regression gave the highest prediction ability.

https://doi.org/10.21203/rs.3.rs-4925882/v

Ö

3.rs-4337825/v

https://doi.org/10.21203/rs

PLBR-24-OAr-366 oreeding journal)

plant

(manuscript ID

Aiyesa

Genomic Predict	tion Models	els Mean Prediction Ability Leke ۱ Leke ۱									ke Vic	tor A					
Xtreme Gradie	nt Boosting	0.81	0.7				0.00		5. ()· ()		3	0.44	0.37	0.32	0.17	
Light Gradie	·	0.83	0.8	0.81	0.73	0.74	0.7	0.57	0.55	0.58	0.52	0.5	0.48	0.41*	0.37	0.27	
k-cluster Genomic BLUI		0.79	0.75	0.78	0.74	0.71	0.7	0.6	0.57	0.54	0.48	0.39	0.4	0.37	0.33	0.21	
		0.65	0.68	0.66	0.64	0.62	0.6	0.46	0.47	0.4	0.38	0.35	0.24	0.28	0.3	0.19	
Extended Gen	0.65	0.68	0.67	0.64	0.62	0.6	0.46	0.47	0.4	0.38	0.35	0.24	0.28	0.3	0.19		
Bayesian Ridge	Regression	0.85*	0.83*	0.82*	0.78*	0.77*	0.74*	0.61*	0.59*	0.62*	0.56*	0.51*	0.5*	0.4	0.4*	0.31*	
	Bayesian B	0.8	0.78	0.76	0.72	0.73	0.71	0.56	0.54	0.55	0.51	0.47	0.44	0.32	0.33	0.28	
E	Bayesian C	0.84	0.81	0.8	0.76	0.76	0.73	0.6	0.57	0.6	0.54	0.49	0.48	0.37	0.37	0.29	
		OTA	515	2	4 ²	PHH	2th	:PR2	4PP	"n	\diamond	$\langle \rangle$	5	EN1	NCW	ASI	
12 🚺	Traits																

Modelling **non-addictive** effects in genomic prediction using classical and machine learning methods. 1st supervisor: R. Sharifi

Improve the genomic prediction accuracy by combining modelling of Additive effects; Dominance effects; Epistatic effects ... using locus-specific weighted dominance effect matrix transformation ... using Genomic Best Linear Unbiased Prediction, Gradient-Boosted Decision Trees, and Convolutional Neural Networks.

Bright E Osatohanmwen

<u>Gen.</u>	SNP M	ARKER	MATRI	X	T	Transformed SNP MARKER MATRIX								
	SNP	SNP	SNP 2	SNP 4	Trait value		SNP	SNP	SNP	SNP		Genomic		
1	AA	CC	AT	GG	2.85 1.72 2.92 2.81 2.86	ed	0	2	3	4 2	P va U	Prediction & validation Using BLUP,		
2	AT	CG	AT	GG		weighted ect matrix	0.92	0	2	2				
3	TT	GG	TT	CC			2	0	0	0	_ /	GrBDTrees, Conv. Neur.		
4	AA	GG	AA	CC		Locus-specific dominance ef transformation	0	0	0	0		Networks and more		
5	AA	CC	TT	CG		Locu dom trans	0	2	2	1.4				

PhD student at epartment of Forest Genetic and Tree Breeding Experim. evolution in maize with replicated divergent selection Preprint: https://doi.org/10.1101/2024.02.26.582128

Projects with the Dep. of Forest Genetic & Tree Breeding (Prof. Gailing)
Environmental association analysis in European beech populations
GWAS and identification of signals of polygenic selection in European beech pops.

Farbweizen. Field & teaching based wheat breeding •Crosses of coloured tissue wheat x wheat elite varieties Bachelor Thesis: Research into a non-destructive colour analysis in the breeding of coloured wheat" (2021, 2023)

And more

Ghat: an R package for identifying adaptive polygenic traits a

Medhat Mahmoud, Mila Tost, Ngoc-Thuy Ha, Henner Simianer, Timothy Beissinger ⋈ Author Notes

G3 Genes|Genomes|Genetics, Volume 13, Issue 2, February 2023, jkac319, https://doi.org/10.1093/g3journal/jkac319 Published: 01 December 2022 Article history ▼

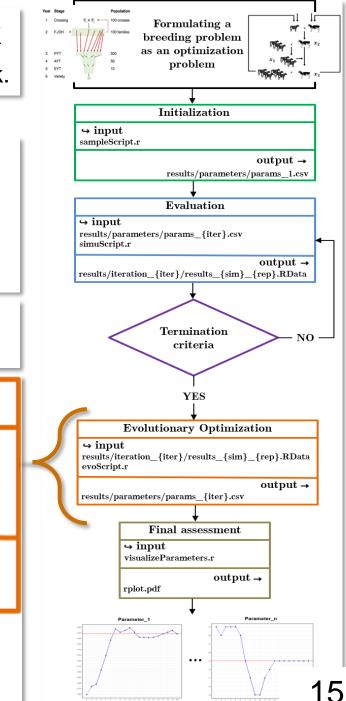
Mila Tost

MoBPSopti Project. Development of an optimization framework for complex breeding programs. Supervs: Simianer, Schlater, Rohde, Pook.

- Transform the breeding problem into an optimization challenge
- Employ stochastic simulation to model and simulate various breeding scenarios
- Reduce the stochasticity of target functions via kernel regression
- Optimize breeding program design using an evolutionary algorithm
- Building optimization framework via the Snakemake workflow management system

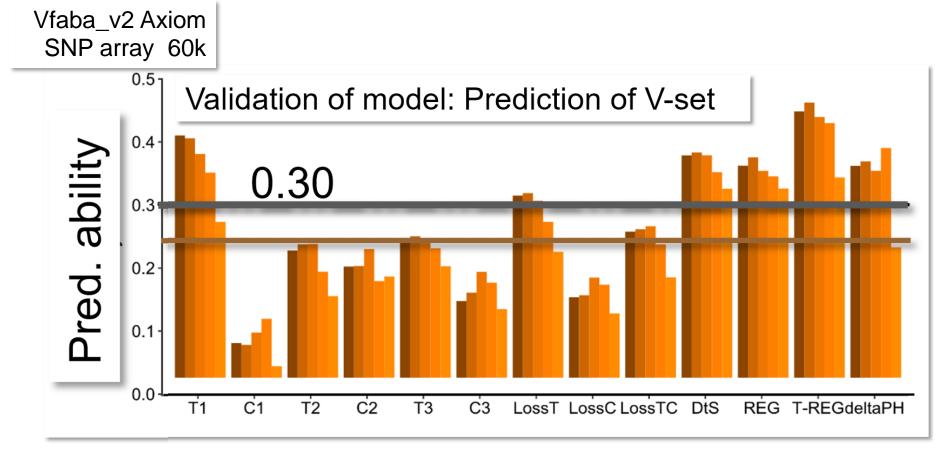
The project is <u>patent pending</u> under application numbers EP24164947.4 and EP24188636.5 with collaboration with BASF Belgium Coordination Center

Azadeh Hassanpour

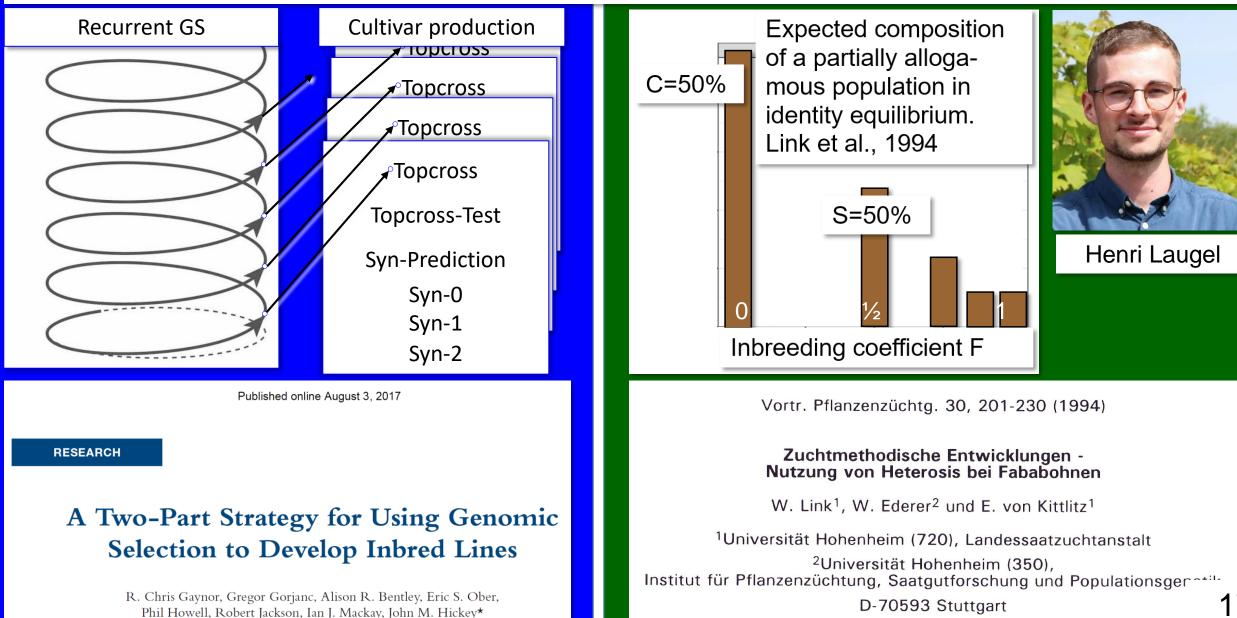

Evolutionary Optimization

 → input results/iteration_{iter}/results_{sim}_{rep}.RData evoScript.r

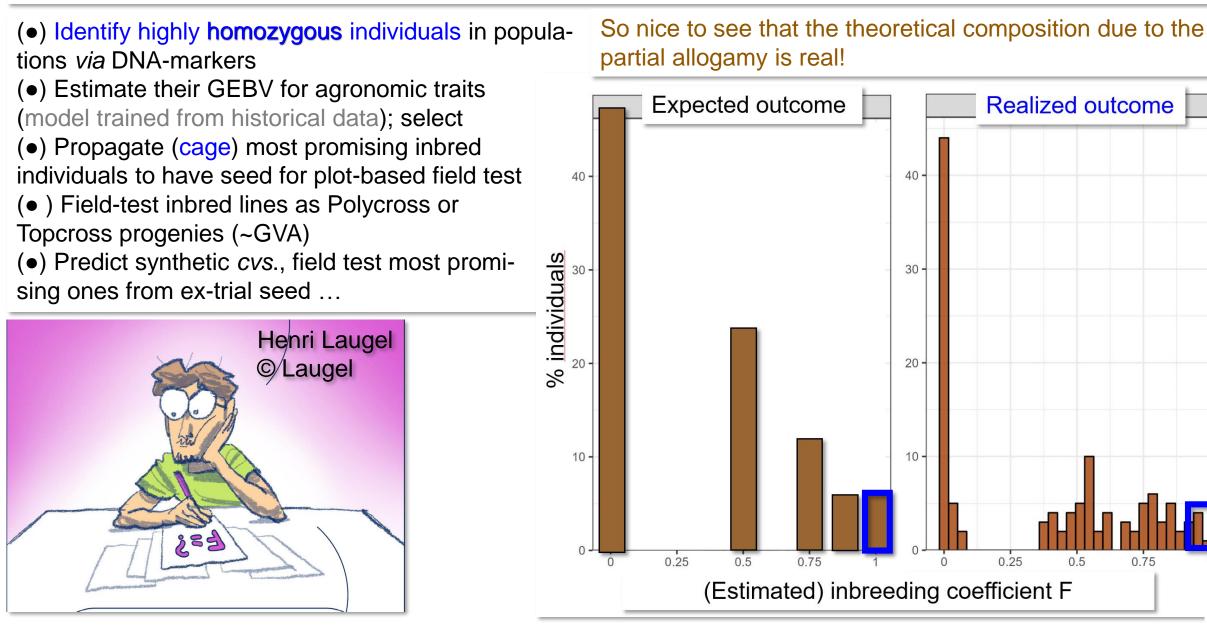
Final assessment


 $output \rightarrow$

 $results/parameters/params_\{iter\}.csv$


Faba bean. GWAS and GP of frost tolerance and winter hardiness, phenotyped in frost chamber (10-21 reps.) and field trials (E=22, 2005-2022)

GBLUP in R; rrBLUP package, G matrix VanRaden 2008. Training set 185 inbred lines, Validation set 64 inbred lines. Hard validation with 'other' genotypes in 'other' experiments



Faba bean. Abo-Direkt. Combine Gaynor et al., 2017 & Link et al., 1994; Link, 2013. New Breeding paradigm and GS to substitute missing DH technology.

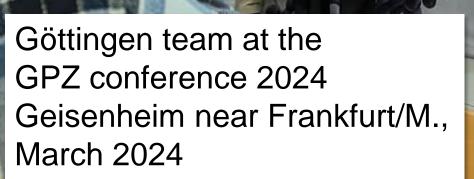
Dissertation project of Henri Laugel , Abo-Direkt⁴. Make use of *à priori* available inbred individuals in faba bean population instead of DH technology

18

0

of individuals with N=11

#


Quentin Burandt speaks today himself: Prospects for future European Quinoa breeding

One of the two plants is Quinoa *Chenopodium quinoa* ;-)

Wikipedia

GERMAN

BREEDI

PLANT

ONF

cel

schule senher ersity

G

