Modulverzeichnis

für den Bachelor-Teilstudiengang "Mathematik"
- zu Anlage II.27 der Prüfungs- und
Studienordnung für den Zwei-Fächer-BachelorStudiengang (Amtliche Mitteilungen I Nr. 21
Teil b/2011 S. 1419, zuletzt geändert durch
Amtliche Mitteilungen I Nr. 23/2019 S. 471)

Module

B.Mat.0011: Analysis I	. 5408
B.Mat.0012: Analytische Geometrie und Lineare Algebra I	5410
B.Mat.0021: Analysis II	. 5412
B.Mat.0022: Analytische Geometrie und Lineare Algebra II	5414
B.Mat.0025: Methoden der Analysis II	5416
B.Mat.0026: Geometrie	. 5418
B.Mat.0031: Fortgeschrittene Methoden der Analysis	5420
B.Mat.0032: Mathematische Grundlagen, Algebra, Zahlentheorie	. 5422
B.Mat.0033: Schulbezogene Angewandte Mathematik	. 5424
B.Mat.0034: Schulbezogene Grundlagen der Stochastik	5426
B.Mat.0040: Einführung in Fachdidaktik Mathematik für das Profil "studium generale" am Beispiel der Sammlung Mathematischer Modelle und Instrumente	5428
B.Mat.0041: Einführung in die Fachdidaktik Mathematik für das lehramtbezogene Profil am Beispiel der Sammlung Mathematischer Modelle und Instrumente	
B.Mat.0720: Mathematische Anwendersysteme (Grundlagen)	5432
B.Mat.1300: Numerische lineare Algebra	. 5434
B.Mat.1400: Maß- und Wahrscheinlichkeitstheorie	5436

Übersicht nach Modulgruppen

I. Kerncurriculum

Es müssen Module im Umfang von 66 C nach Maßgabe der folgenden Bestimmungen erfolgreich absolviert werden.

1. Orientierungsmodule Mathematik
Es müssen folgende zwei Orientierungsmodule im Umfang von insgesamt 18 C erfolgreich absolviert werden:
B.Mat.0011: Analysis I (9 C, 6 SWS)
B.Mat.0012: Analytische Geometrie und Lineare Algebra I (9 C, 6 SWS) - Orientierungsmodul5410
2. Basismodule Analysis
Es muss eines der folgenden zwei Wahlpflichtmodule im Umfang von 9 C erfolgreich absolviert werden:
B.Mat.0021: Analysis II (9 C, 6 SWS)5412
B.Mat.0025: Methoden der Analysis II (9 C, 6 SWS)
3. Basismodule Geometrie
Es muss eines der folgenden zwei Wahlpflichtmodule im Umfang von mindestens 6 C erfolgreich absolviert werden; wird das Modul B.Mat.0022 erfolgreich absolviert, so werden 3 C dem Professionalisierungsbereich zugerechnet:
B.Mat.0022: Analytische Geometrie und Lineare Algebra II (9 C, 6 SWS)5414
B.Mat.0022: Analytische Geometrie und Lineare Algebra II (9 C, 6 SWS)
B.Mat.0026: Geometrie (6 C, 4 SWS)
4. Reine Mathematik Es muss eines der folgenden zwei Wahlpflichtmodule im Umfang von 9 C erfolgreich absolviert werde: B.Mat.0031: Fortgeschrittene Methoden der Analysis (9 C, 6 SWS)
4. Reine Mathematik Es muss eines der folgenden zwei Wahlpflichtmodule im Umfang von 9 C erfolgreich absolviert werde: B.Mat.0031: Fortgeschrittene Methoden der Analysis (9 C, 6 SWS)

6. Fachdidaktik

Es muss eines der folgenden zwei Wahlpflichtmodule im Umfang von mindestens 3 C erfolgreich absolviert werden; wird das Modul B.Mat.0041 erfolgreich absolviert, so werden 3 C dem Professionalisierungsbereich zugerechnet:

B.Mat.0041: Einführung in die Fachdidaktik Mathematik für das lehramtbezogene Profil am Beispiel der Sammlung Mathematischer Modelle und Instrumente (6 C, 4 SWS).......5430

II. Studienangebot in Profilen des Zwei-Fächer-Bachelor-Studiengangs

1. Lehramtbezogenes Profil

Studierende des Lehramtbezogenen Profils müssen abweichend von Ziffer I Nr. 6 folgendes Wahlpflichtmodul im Umfang von 6 C erfolgreich absolvieren:

B.Mat.0041: Einführung in die Fachdidaktik Mathematik für das lehramtbezogene Profil am Beispiel der Sammlung Mathematischer Modelle und Instrumente (6 C, 4 SWS).......5430

2. Profil "studium generale"

Studierende des Profils "studium generale" müssen abweichend von Ziffer I Nr. 5 Module im Umfang von insgesamt 21 C nach Maßgabe folgender Bestimmungen absolvieren. Darüber hinaus können Studierende des Studienfaches "Mathematik" neben den sonstigen zulässigen Angeboten alle Module des Bachelor-Studiengangs "Mathematik" mit Modulnummern B.Mat.[Ziffern] absolvieren, soweit sie nicht bereits im Rahmen des Kerncurriculums absolviert wurden.

a.

Es muss eines der folgenden Module absolviert werden:

B.Mat.0033: Schulbezogene Angewandte Mathematik (9 C, 6 SWS)......5424

B.Mat.1300: Numerische lineare Algebra (9 C, 6 SWS)......5434

b.

Es muss eines der folgenden Module absolviert werden:

B.Mat.0034: Schulbezogene Grundlagen der Stochastik (9 C, 6 SWS)......5426

B.Mat.1400: Maß- und Wahrscheinlichkeitstheorie (9 C, 6 SWS)......5436

C.

Es muss folgendes Modul erfolgreich absolviert werden:

B.Mat.0720: Mathematische Anwendersysteme (Grundlagen) (3 C, 2 SWS)...... 5432

III. Zweitfach "Mathematik" im Bachelor-Studiengang "Wirtschaftspädagogik"

Es müssen Module im Umfang von 36 C nach Maßgabe der nachfolgenden Bestimmungen erfolgreich absolviert werden.

1. Orientierungsmodule Mathematik

Georg-August-Universität Göttingen Modul B.Mat.0011: Analysis I English title: Analysis I

Lernziele/Kompetenzen:

Lernziele:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit analytischem mathematischem Grundwissen vertraut. Sie

- wenden ihr Wissen über Mengen und Logik in verschiedenen Beweistechniken an;
- gehen sicher mit Ungleichungen reeller Zahlen sowie mit Folgen und Reihen reeller und komplexer Zahlen um;
- untersuchen reelle und komplexe Funktionen in einer Veränderlichen auf Stetigkeit, Differenzierbarkeit und Integrierbarkeit;
- berechnen Integrale und Ableitungen von reellen und komplexen Funktionen in einer Veränderlichen.

Kompetenzen:

keine

Nach erfolgreichem Absolvieren des Moduls haben die Studierenden grundlegende Kompetenzen im Bereich der Analysis erworben. Sie

- formulieren mathematische Sachverhalte aus analytischen Bereichen in schriftlicher und mündlicher Form korrekt;
- lösen Probleme anhand von Fragestellungen der reellen, eindimensionalen Analysis;
- analysieren klassische Funktionen und ihre Eigenschaften mit Hilfe von funktionalem Denken;
- erfassen grundlegende Eigenschaften von Zahlenfolgen und Funktionen;
- sind mit der Entwicklung eines mathematischen Gebietes aus einem Axiomensystem vertraut.

Arbeitsaufwand:

Präsenzzeit: 84 Stunden Selbststudium:

186 Stunden

Lehrveranstaltung: Differenzial- und Integralrechnung I	4 SWS	
Lehrveranstaltung: Differenzial- und Integralrechnung I - Üb	ung 2 SWS	
Lehrveranstaltung: Differenzial- und Integralrechnung I - Pra	aktikum	
Das Praktikum ist ein optionales Angebot zum Training des Prob	olemlösens.	
Prüfung: Klausur (120 Minuten)	9 C	
Prüfungsvorleistungen:		
B.Mat.0011.Ue: Erreichen von mindestens 50% der Übungspunk	kte und	
zweimaliges Vorstellen von Lösungen in den Übungen		
Prüfungsanforderungen:		
Grundkenntnisse der Analysis, Verständnis des Grenzwertbegrif	fs, Beherrschen von	
Beweistechniken		
Zugangsvoraussetzungen: Empfohle	ene Vorkenntnisse:	

keine

Sprache: Deutsch	Modulverantwortliche[r]: Studiendekan/in Mathematik
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: gemäß Bemerkung	Empfohlenes Fachsemester: 1 - 3
Maximale Studierendenzahl: nicht begrenzt	

- Dozent/in: Lehrpersonen des Mathematischen Instituts
- Pflichtmodul in den Bachelor-Studiengängen Mathematik und Physik sowie im Zwei-Fächer-Bachelorstudiengang mit Fach Mathematik
- Im Bachelor-Studiengang Angewandte Informatik kann dieses Modul zusammen mit B.Mat.0012 die Module B.Mat.0801 und B.Mat.0802 ersetzen.
- Universitätsweites Schlüsselkompetenzangebot; als solches nicht verwendbar für Studierende im Zwei-Fächer-Bachelor Studiengang mit Fach Mathematik, Studiengang Master of Education mit Fach Mathematik, Bachelor/Master-Studiengang Mathematik und Promotionsstudiengang Mathematical Sciences.

Wiederholungsregelungen

- Nicht bestandene Prüfungen zu diesem Modul können dreimal wiederholt werden.
- Ein vor Beginn der Vorlesungszeit des ersten Fachsemesters, z.B. im Rahmen des mathematischen Sommerstudiums, absolvierter Prüfungsversuch im Modul B.Mat.0011 "Analysis I" gilt im Falle des Nichtbestehens als nicht unternommen (Freiversuch); eine im Freiversuch bestandene Modulprüfung kann einmal zur Notenverbesserung wiederholt werden; durch die Wiederholung kann keine Verschlechterung der Note eintreten. Eine Wiederholung von bestandenen Prüfungen zum Zwecke der Notenverbesserung ist im Übrigen nicht möglich; die Bestimmung des §16 a Abs. 3 Satz 2 APO bleibt unberührt.

Georg-August-Universität Göttingen Modul B.Mat.0012: Analytische Geometrie und Lineare Algebra I English title: Analytic geometry and linear algebra I

Lernziele/Kompetenzen:

Lernziele:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit mathematischem Grundwissen vertraut. Sie

- definieren Vektorräume und lineare Abbildungen;
- beschreiben lineare Abbildungen durch Matrizen;
- lösen lineare Gleichungssysteme und Eigenwertprobleme und berechnen Determinanten:
- erkennen Vektorräume mit geometrischer Struktur und ihre strukturerhaltenden Homomorphismen, insbesondere im Fall euklidischer Vektorräume.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls haben die Studierenden grundlegende Kompetenzen in den Bereichen der analytischen Geometrie und der linearen Algebra erworben. Sie

- formulieren mathematische Sachverhalte aus dem Bereich der linearen Algebra in schriftlicher und mündlicher Form korrekt;
- lösen Probleme anhand von Fragestellungen der linearen Algebra;
- erfassen das Konzept der Linearität bei unterschiedlichen mathematischen Objekten;
- nutzen lineare Strukturen, insbesondere den Isomorphiebegriff, für die Formulierung mathematischer Beziehungen;
- erfassen grundlegende strukturelle Eigenschaften linearer und euklidischer Vektorräume;
- sind mit der Entwicklung eines mathematischen Gebietes aus einem Axiomensystem vertraut.

Arbeitsaufwand: Präsenzzeit: 84 Stunden Selbststudium:

186 Stunden

Lehrveranstaltung: Analytische Geometrie und Lineare Algebra I	4 SWS
Lehrveranstaltung: Analytische Geometrie und Lineare Algebra I - Übung	2 SWS
Lehrveranstaltung: Analytische Geometrie und Lineare Algebra I - Praktikum	
Das Praktikum ist ein optionales Angebot zum Training des Problemlösens.	
Prüfung: Klausur (120 Minuten)	9 C
Prüfung: Klausur (120 Minuten) Prüfungsvorleistungen:	9 C
	9 C
Prüfungsvorleistungen:	9 C

linearer Gleichungsysteme

Grundkenntnisse der linearen Algebra, insbesondere über Lösbarkeit und Lösungen

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: Studiendekan/in Mathematik
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: 1 - 3
Maximale Studierendenzahl: nicht begrenzt	

- Dozent/in: Lehrpersonen des Mathematischen Instituts
- Pflichtmodul in den Bachelor-Studiengängen Mathematik und Physik sowie im Zwei-Fächer-Bachelorstudiengang mit Fach Mathematk
- Im Bachelor-Studiengang Angewandte Informatik kann dieses Modul zusammen mit B.Mat.0011 die Module B.Mat.0801 und B.Mat.0802 ersetzen.
- Universitätsweites Schlüsselkompetenzangebot; als solches nicht verwendbar für Studierende im Zwei-Fächer-Bachelor Studiengang mit Fach Mathematik, Studiengang Master of Education mit Fach Mathematik, Bachelor/Master-Studiengang Mathematik und Promotionsstudiengang Mathematical Sciences.

Georg-August-Universität Göttingen Modul B.Mat.0021: Analysis II English title: Analysis II

Lernziele/Kompetenzen:

Lernziele:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit weitreichendem analytischen mathematischen Grundwissen vertraut. Sie

- · beschreiben topologische Grundbegriffe mathematisch korrekt;
- untersuchen Funktionen in mehreren Veränderlichen auf Stetigkeit, Differenzierbarkeit und Integrierbarkeit;
- berechnen Integrale und Ableitungen von Funktionen in mehreren Veränderlichen;
- nutzen Konzepte der Ma
 ß- und Integrationstheorie zur Berechnung von Integralen;
- benennen Aussagen zur Existenz und Eindeutigkeit von Lösungen gewöhnlicher Differenzialgleichungen.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls haben die Studierenden grundlegende Kompetenzen im Bereich der Analysis erworben. Sie

- formulieren mathematische Sachverhalte aus analytischen Bereichen in schriftlicher und mündlicher Form korrekt;
- lösen Probleme anhand von Fragestellungen der reellen, mehrdimensionalen Analysis;
- analysieren klassische Funktionen in mehreren Variablen und ihre Eigenschaften mit Hilfe von funktionalem Denkens;
- erfassen grundlegende topologische Eigenschaften;
- sind mit der Entwicklung eines mathematischen Gebietes aus einem Axiomensystem vertraut.

Arbeitsaufwand:

Präsenzzeit: 84 Stunden Selbststudium:

186 Stunden

Lehrveranstaltung: Differenzial- und Integralrechnung II	4 SWS
Lehrveranstaltung: Differenzial- und Integralrechnung II - Übung	2 SWS
Lehrveranstaltung: Differenzial- und Integralrechnung II - Praktikum	
Das Praktikum ist ein optionales Angebot zum Training des Problemlösens.	
Prüfung: Klausur (120 Minuten)	
Prüfungsvorleistungen:	
B.Mat.0021.Ue: Erreichen von mindestens 50% der Übungspunkte und	
zweimaliges Vorstellen von Lösungen in den Übungen	
Prüfungsanforderungen:	
Grundkenntnisse der Differenzial- und Integralrechnung in mehreren Veränderlich	en

sowie der Maß- und Integrationstheorie, Fähigkeit des Problemlösens

Zugangsvoraussetzungen:

keine

Empfohlene Vorkenntnisse:

B.Mat.0011, B.Mat.0012

Sprache: Deutsch	Modulverantwortliche[r]: Studiendekan/in Mathematik
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: 2 - 4
Maximale Studierendenzahl: nicht begrenzt	

- Dozent/in: Lehrpersonen des Mathematischen Instituts
- Im Zwei-Fächer-Bachelorstudiengang, Fach Mathematik, kann dieses Modul das Modul B.Mat.0025 "Methoden der Analysis II" ersetzen.
- Universitätsweites Schlüsselkompetenzangebot; als solches nicht verwendbar für Studierende im Zwei-Fächer-Bachelor Studiengang mit Fach Mathematik, Studiengang Master of Education mit Fach Mathematik, Bachelor/Master-Studiengang Mathematik und Promotionsstudiengang Mathematical Sciences.

Georg-August-Universität Göttingen Modul B.Mat.0022: Analytische Geometrie und Lineare Algebra II English title: Analytic geometry and linear algebra II

Lernziele/Kompetenzen: Lernziele: Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit mathematischem Grundwissen vertraut. Sie Arbeitsaufwand: Präsenzzeit: 84 Stunden Selbststudium:

- bestimmen Normalformen von Matrizen:
- · erkennen Bilinearformen und Kegelschnitte;
- sind mit den Konzepten der affinen und projektiven Geometrie vertraut;
- erkennen Strukturen bei Gruppen, Ringen und Moduln.

Kompetenzen:

Sprache: Deutsch

Nach erfolgreichem Absolvieren des Moduls haben die Studierenden grundlegende Kompetenzen in Bereichen der analytischen Geometrie und der linearen Algebra erworben. Sie

- formulieren mathematische Sachverhalte aus dem Bereich der Geometrie in schriftlicher und mündlicher Form korrekt:
- lösen Probleme anhand von Fragestellungen der analytischen Geometrie;
- wenden Konzepte der linearen Algebra auf geometrische Fragestellungen an;
- erfassen grundlegende strukturelle Eigenschaften linearer und euklidischer Vektorräume;

Vektorräume; • sind mit der Entwicklung eines mathematischen Gebietes aus einem Axiomensystem vertraut.			
Lehrveranstaltung: Analytische Geometrie und Lineare Algebra II		4 SWS	5
Lehrveranstaltung: Analytische Geometrie und Lin	eare Algebra II - Übung	2 SWS	
Lehrveranstaltung: Analytische Geometrie und Lineare Algebra II - Praktikum Das Praktikum ist ein optionales Angebot zum Training des Problemlösens.			
Prüfung: Klausur (120 Minuten) Prüfungsvorleistungen: B.Mat.0022.Ue: Erreichen von mindestens 50% der Übungspunkte und zweimaliges Vorrechnen von Lösungen in den Übungen		9 C	
Prüfungsanforderungen: Grundkenntnisse geometrischer Begriffe und in linearer Algebra			
Zugangsvoraussetzungen: Empfohlene Vorkenntniss keine B.Mat.0011, B.Mat.0012		e:	

Modulverantwortliche[r]:

Studiendekan/in Mathematik

186 Stunden

Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: 2 - 4
Maximale Studierendenzahl: nicht begrenzt	

- Dozent/in: Lehrpersonen des Mathematischen Instituts
- Im Zwei-Fächer-Bachelorstudiengang, Fach Mathematik, kann dieses Modul das Modul B.Mat.0026 "Geometrie" ersetzen.
- Universitätsweites Schlüsselkompetenzangebot; als solches nicht verwendbar für Studierende im Zwei-Fächer-Bachelor Studiengang mit Fach Mathematik, Studiengang Master of Education mit Fach Mathematik, Bachelor/Master-Studiengang Mathematik und Promotionsstudiengang Mathematical Sciences.

Georg-August-Universität Göttingen Modul B.Mat.0025: Methoden der Analysis II English title: Methods of analysis II

Lernziele/Kompetenzen:

Lernziele:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit weitreichendem mathematischen Grundwissen vertraut. Sie

- beschreiben topologische Grundbegriffe mathematisch korrekt;
- untersuchen Funktionen in mehreren Veränderlichen auf Stetigkeit, Differenzierbarkeit und Integrierbarkeit;
- berechnen Integrale und Ableitungen von Funktionen in mehreren Veränderlichen;
- benennen Aussagen zur Existenz und Eindeutigkeit von Lösungen gewöhnlicher Differenzialgleichungen;
- gehen mit unterschiedlichen mathematischen Zugängen und Aufgabenkonzepten, wie insbesondere Problemlösen, Modellieren, induktiven wie deduktiven Methoden, um.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls haben die Studierenden grundlegende Kompetenzen im Bereich der Analysis erworben. Sie

- formulieren mathematische Sachverhalte aus analytischen Bereichen in schriftlicher und mündlicher Form korrekt;
- vernetzen Inhalte der Analysis II mit Themen der Grundlagen der Mathematik, insbesondere der linearen Algebra, Geometrie und Stochastik;

Grundkenntnisse der Differenzial- und Integralrechnung in mehreren Veränderlichen,

• restrukturieren Inhalte und Methoden der Analysis von einem höheren Standpunkt.

Arbeitsaufwand: Präsenzzeit: 84 Stunden Selbststudium:

186 Stunden

Lehrveranstaltung: Methoden der Differential- und Integralrechnung II	4 SWS
Lehrveranstaltung: Methoden der Differential- und Integralrechnung II -	2 SWS
Übung	
Lehrveranstaltung: Methoden der Differential- und Integralrechnung II -	
Praktikum	
Das Praktikum ist ein optionales Angebot zum Training des Problemlösens.	
Prüfung: Klausur (120 Minuten)	9 C
Prüfungsvorleistungen:	
B.Mat.0025.Ue: Erreichen von mindestens 50% der Übungspunkte und	
zweimaliges Vorstellen von Lösungen in den Übungen	
Prüfungsanforderungen:	

Zugangsvoraussetzungen:

Fähigkeit des Problemlösens

keine

Empfohlene Vorkenntnisse:

B.Mat.0011, B.Mat.0012

Sprache: Deutsch	Modulverantwortliche[r]: Studiendekan/in
Angebotshäufigkeit: keine Angabe	Dauer: 1 Semester
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: 2 - 4
Maximale Studierendenzahl: nicht begrenzt	

- Dozent/in: Lehrpersonen des Mathematischen Instituts
- Universitätsweites Schlüsselkompetenzangebot; als solches nicht verwendbar für Studierende im Zwei-Fächer-Bachelor Studiengang mit Fach Mathematik, Studiengang Master of Education mit Fach Mathematik, Bachelor/Master-Studiengang Mathematik und Promotionsstudiengang Mathematical Sciences.

Georg-August-Universität Göttingen Modul B.Mat.0026: Geometrie English title: Basic Geometry 6 C 4 SWS

Lernziele/Kompetenzen:

Lernziele:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit mathematischem Grundwissen vertraut. Sie

- bestimmen Normalformen von Matrizen;
- · erkennen Bilinearformen und Kegelschnitte;
- gehen mit Konzepten der affinen und projektiven Geometrie um.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls haben die Studierenden grundlegende Kompetenzen im Bereich der Geometrie erworben. Sie

- formulieren mathematische Sachverhalte aus dem Bereich der Geometrie in schriftlicher und mündlicher Form korrekt:
- lösen Probleme anhand von Fragestellungen der analytischen Geometrie;
- wenden Konzepte der linearen Algebra auf geometrische Fragestellungen an;
- sind mit der Entwicklung eines mathematischen Gebietes aus einem Axiomensystem vertraut.

Arbeitsaufwand:

Präsenzzeit: 56 Stunden Selbststudium:

124 Stunden

Lehrveranstaltung: Analytische Geometrie und Lineare Algebra II	2,67 SWS
Lehrveranstaltung: Analytische Geometrie und Lineare Algebra II - Übung	1,33 SWS
Lehrveranstaltung: Analytische Geometrie und Lineare Algebra II -	
Praktikum	
Das Praktikum ist ein optionales Angebot zum Training des Problemlösens.	

Prüfung: Klausur (120 Minuten)	6 C
Prüfungsvorleistungen:	
B.Mat.0026.Ue: Erreichen von mindestens 50% der Übungspunkte und	
zweimaliges Vorstellen von Lösungen in den Übungen	

Prüfungsanforderungen: Kenntnisse in schulbezogener Geometrie

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
keine	B.Mat.0012
Sprache:	Modulverantwortliche[r]:
Deutsch	Studiendekan/in
Angebotshäufigkeit:	Dauer:
jedes Sommersemester	1 Semester
Wiederholbarkeit:	Empfohlenes Fachsemester:

dreimalig	2 - 4
Maximale Studierendenzahl:	
nicht begrenzt	

- Dozent/in: Lehrpersonen des Mathematischen Instituts
- 4 SWS bedeutet: 4V+2Ü über die ersten zwei Drittel der Vorlesungszeit
- Universitätsweites Schlüsselkompetenzangebot; als solches nicht verwendbar für Studierende im Zwei-Fächer-Bachelor Studiengang mit Fach Mathematik, Studiengang Master of Education mit Fach Mathematik, Bachelor/Master-Studiengang Mathematik und Promotionsstudiengang Mathematical Sciences.

Georg-August-Universität Göttingen 9 C 6 SWS Modul B.Mat.0031: Fortgeschrittene Methoden der Analysis English title: Advanced methods in analysis Lernziele/Kompetenzen: Arbeitsaufwand:

Lernziele:

Nach erfolgreichem Absolvieren des Moduls haben die Studierenden

- Grundwissen in einem über die Basismodule "Analysis I" und "Analysis II" bzw. "Methoden der Analysis II" hinausgehenden Gebiet der höheren Analysis erworben;
- anhand analytischer Fragestellungen ihre Kenntnisse im Bereich des wissenschaftlichen Arbeitens vertieft;
- durch den Einsatz von Methoden der höheren Analysis die Vernetzung ihres Grundlagenwissens ausgebaut.

Kompetenzen:

keine

Sprache:

Deutsch

Nach erfolgreichem Absolvieren des Modules haben die Studierenden grundlegende Kompetenzen im Bereich "Höhere Analysis" erworben. Sie

- beherrschen Begriffe und Methoden der höheren Analysis unter Berücksichtigung schulbezogener Aspekte;
- haben ihr Grundlagenwissen um Kenntnisse aus dem Bereich der höheren Analysis vertieft;
- haben ihre Problemlösungskompetenz um Methoden der höheren Analysis
- verfügen über eine Auswahl geeigneter analytischer Methoden zur Beschreibung funktionaler Zusammenhänge.

Präsenzzeit: 84 Stunden Selbststudium:

186 Stunden

Lehrveranstaltung: Vorlesung (4 SWS) mit Übunge Inhalte: Wechselndes Angebot, z.B. "Funktionentheorie", "Diffe" "Funktionalanalysis", "Analysis III"	, ,		
Prüfung: Klausur (120 Minuten) Prüfungsvorleistungen: B.Mat.0031.Ue: Erreichen von mindestens 50% der Übungspunkte und zweimaliges Vorstellen von Lösungen in den Übungen		9 C	
Prüfungsanforderungen: Grundkenntnisse über fortgeschrittene Methoden der Analysis			
Zugangsvoraussetzungen:	Empfohlene Vorkenntniss	e:	

B.Mat.0011

Modulverantwortliche[r]:

Studiengangsbeauftragte/r

B.Mat.0021 oder B.Mat.0025

Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 3 - 6
Maximale Studierendenzahl: nicht begrenzt	

Dozent/in: Lehrpersonen des Mathematischen Instituts oder des Instituts für Numerische und Angewandte Mathematik

Georg-August-Universität Göttingen Modul B.Mat.0032: Mathematische Grundlagen, Algebra, Zahlentheorie English title: Foundations of mathematics, algebra, number theory Lernziele/Kompetenzen: Lernziele: Nach erfolgreichem Absolvieren des Moduls haben die Studierenden • Grundwissen in einem der Gebiete "Algebra", "Zahlentheorie", "Mathematische 9 C 6 SWS Arbeitsaufwand: Präsenzzeit: 84 Stunden Selbststudium: 186 Stunden

- Grundwissen in einem der Gebiete "Algebra", "Zahlentheorie", "Mathematische Grundlagen" oder einer Kombination dieser Gebiete erworben;
- anhand algebraischer bzw. zahlentheoretischer Fragestellungen ihre Kenntnisse im Bereich des wissenschaftlichen Arbeitens vertieft;
- durch den Einsatz algebraischer bzw. zahlentheoretischer Methoden die Vernetzung ihres Grundlagenwissens ausgebaut.

Kompetenzen:

'Zahlentheorie"

Nach erfolgreichem Absolvieren des Moduls haben die Studierenden grundlegende Kenntnisse in einem der Gebiete "Algebra", "Zahlentheorie", "Mathematische Grundlagen" oder einer Kombination dieser Gebiete erworben. Sie

- beherrschen Begriffe und Methoden aus den genannten Gebieten unter Berücksichtigung schulbezogener Aspekte;
- · haben ihr mathematisches Abstraktionsvermögen ausgebaut;
- haben ihre Problemlösungskompetenz um Methoden der Algebra bzw.
 Zahlentheorie erweitert;
- verfügen über eine Auswahl geeigneter algebraischer Methoden zur Beschreibung zahlentheoretischer und algebraischer Zusammenhänge.

Grundkenntnisse in einem der Gebiete "Mathematische Grundlagen", "Algebra" oder

Zanientileoretischer und algebraischer Zusammermange.		
Lehrveranstaltung: Vorlesung (4 SWS) mit Übungen (2 SWS)		
Inhalte:		
Wechselndes Angebot, z. B. "Algebra" oder "Zahlen und Zahlentheorie"		
Prüfung: Klausur (120 Minuten)	9 C	
Prüfungsvorleistungen:		
B.Mat.0032.Ue: Erreichen von mindestens 50% der Übungspunkte und		
zweimaliges Vorstellen von Lösungen in den Übungen		
Prüfungsanforderungen:		

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
keine	• B.Mat.0012
	B.Mat.0022 oder B.Mat.0026
Sprache:	Modulverantwortliche[r]:
Deutsch	Studiengangsbeauftragte/r

Angebotshäufigkeit: jedes Semester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 2 - 6
Maximale Studierendenzahl: nicht begrenzt	

Dozent/in: Lehrpersonen des Mathematischen Instituts

Georg-August-Universität Göttingen Modul B.Mat.0033: Schulbezogene Angewandte Mathematik English title: Applied mathematics at school

Lernziele/Kompetenzen:

Lernziele:

Nach erfolgreichem Absolvieren des Moduls haben die Studierenden

- Grundwissen in numerischer und angewandter Mathematik erworben;
- beispielbezogene Erfahrungen mit elementaren Modellierungsprozessen und ihren theoretischen Hintergründen gesammelt.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls haben die Studierenden grundlegende Kompetenzen in numerischer und angewandter Mathematik erworben. Sie

- kennen elementare Modelle in Mathematik und Informatik unter schulbezogenen Aspekten;
- kennen ausgewählte grundlegende Verfahren zur numerischen Lösung mathematischer Probleme;
- können numerische Algorithmen in einem Anwendersystem implementieren;
- kennen elementare Aussagen zu Konvergenz und Komplexität ausgewählter numerischer Algorithmen;
- haben ihre Problemlösekompetenz um Methoden der numerischen und angewandten Mathematik erweitert.

Arbeitsaufwand:

Präsenzzeit: 84 Stunden Selbststudium:

186 Stunden

Lehrveranstaltung: Schulbezogene Angewandte Mathematik, Modellbildung und Informatik (SAMMI)	4 SWS
Lehrveranstaltung: Schulbezogene Angewandte Mathematik, Modellbildung und Informatik (SAMMI) - Übung	2 SWS
Prüfung: Klausur (120 Minuten)	9 C
Prüfung: Klausur (120 Minuten) Prüfungsvorleistungen:	9 C

Prüfungsanforderungen:

Kenntnisse elementarer Modellbildung in Mathematik und Informatik

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
keine	B.Mat.0021 oder B.Mat.0025
	 B.Mat.0022 oder B.Mat.0026
	• B.Mat.0720
Sprache:	Modulverantwortliche[r]:
Deutsch	Studiengangsbeauftragte/r
Angebotshäufigkeit:	Dauer:
jedes Wintersemester	1 Semester

Wiederholbarkeit:	Empfohlenes Fachsemester:
zweimalig	3 - 6
Maximale Studierendenzahl: nicht begrenzt	
Bemerkungen: Dozent/in: Instituts für Numerische und Angewandte Mathematik	

Georg-August-Universität Göttingen Modul B.Mat.0034: Schulbezogene Grundlagen der Stochastik

9 C 6 SWS

English title: Stochastics at school

Lernziele/Kompetenzen:

Lernziele:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit den Grundbegriffen und der Denkweise der mathematischen Stochastik vertraut. Sie

- modellieren diskrete Wahrscheinlichkeitsräume, beherrschen die damit verbundene Kombinatorik sowie den Einsatz von Unabhängigkeit und bedingten Wahrscheinlichkeiten;
- kennen die wichtigsten Verteilungen von Zufallsvariablen und berechnen Kenngrößen;
- rechnen und modellieren mit stetigen und mehrdimensionalen Verteilungen;
- lösen stochastische Probleme mittels Wahrscheinlichkeitsungleichungen und dem zentralen Grenzwertsatz;
- · verstehen das schwache Gesetz der großen Zahlen;
- kennen einfache stochastische Prozesse, z.B. Verzweigungsprozesse oder Markov-Ketten, und verstehen deren elementare Eigenschaften;
- erfassen die Grundbegriffe der mathematischen Statistik.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage

- elementare stochastische Denkweisen und Beweistechniken anzuwenden;
- stochastische Problemstellungen über Wahrscheinlichskeitsräume und Zufallsvariablen zu modellieren und zu analysieren;
- die wichtigsten Verteilungen zu verstehen und anzuwenden;
- stochastische Abschätzungen mit Hilfe von Wahrscheinlichkeitsgesetzen durchzuführen.

Arbeitsaufwand:

Präsenzzeit: 84 Stunden Selbststudium:

186 Stunden

Lehrveranstaltung: Grundlagen der Stochastik	4 SWS
Lehrveranstaltung: Grundlagen der Stochastik - Übung	2 SWS
Prüfung: Klausur (120 Minuten)	9 C
Prüfungsvorleistungen:	
B.Mat.0034.Ue: Erreichen von mindestens 50% der Übungspunkte und	
zweimaliges Vorstellen von Lösungen in den Übungen	
Prüfungsanforderungen:	
Schulbezogene Grundlagen der Stochastik	

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
keine	 B.Mat.0021 oder B.Mat.0025
	B.Mat.0022 oder B.Mat.0026
Sprache:	Modulverantwortliche[r]:

Deutsch	Studiengangsbeauftragte/r
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 3 - 5
Maximale Studierendenzahl: nicht begrenzt	

Dozent/in: Lehrpersonen des Instituts für Mathematische Stochastik

Georg-August-Universität Göttingen

Modul B.Mat.0040: Einführung in Fachdidaktik Mathematik für das Profil "studium generale" am Beispiel der Sammlung Mathematischer Modelle und Instrumente

English title: Introduction to mathematics education for the course track "studium generale" on the example of the collection of mathematical models and instruments

3 C 2 SWS

Lernziele/Kompetenzen:

Lernziele:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit Grundwissen im Bereich "Fachdidaktik Mathematik" vertraut. Sie

- verfügen über mathematikdidaktisches Grundlagenwissen über lerntheoretische und -psychologische Hintergründe und beziehen diese auf das Lernen und Lehren von Mathematik;
- nennen fachdidaktisch relevante Ergebnisse der empirischen Bildungs- und Unterrichtsforschung;
- strukturieren Lehr-Lern-Prozesse mit den Konzepten fundamentaler Ideen und Grundvorstellungen;
- erkennen Grundvorstellungen und fundamentale Ideen für den Mathematikunterricht der Sekundarstufe I in Situationen des Mathematikunterrichts;
- nutzen mathematikdidaktische Befunde und Konzepte sowie konkrete Ansätze zu typischen, insbesondere heterogenen Lernsituationen, um diese Lernsituationen im Mathematikunterricht zu verstehen;
- verwenden bereichsspezifische Argumentationsweisen, Problemlösestrategien und Mathematisierungsmuster sowie typische Lernperspektiven im Stoffgebiet (insbesondere Vorstellungen, Fehlermuster, mathematische und sprachsensible Verständnishürden, Anknüpfungspunkte);
- kennen zentrale didaktische Konzepte und Materialien für den Unterricht eines Stoffgebietes und analysieren damit insbesondere heterogene Lernsituationen sowie das Fördern und Fordern im Mathematikunterricht.
- nutzen Möglichkeiten und Wirkung neuer Medien sowie von Objekten mathematischer Sammlungen;
- nutzen verschiedene Repräsentationsformen insbesondere mit Hilfe von Exponaten der "Sammlung mathematischer Modelle und Instrumente".

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls haben die Studierenden grundlegende Kompetenzen im Bereich "Fachdidaktik Mathematik" erworben, insbesondere:

- Vermittlungskompetenz mathematischer Kenntnisse sowie fach- und schulbezogener Fähigkeiten;
- stoffdidaktische, sachbezogene Analyse mathematischer Lerninhalte.

Lehrveranstaltung: Vorlesung (2 SWS) (Vorlesung) *Inhalte*:

Arbeitsaufwand:

Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden

Vorlesung "Einführung in die Mathematikdidaktik" oder "Einführung in die	
Mathematikdidaktik am Beispiel der Sammlung mathematischer Modelle und	
Instrumente"	

Prüfung: Klausur (90 Minuten)	3 C

Prüfungsanforderungen: Fachbezogene Grundlagen und Methoden der Fachdidaktik Mathematik am Beispiel einer Stoffdidaktik

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse: B.Mat.0011, B.Mat.0012
Sprache: Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte/r
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 4 - 6
Maximale Studierendenzahl: nicht begrenzt	

Bemerkungen:

Dozent/in: Lehrpersonen des Mathematischen Instituts

Georg-August-Universität Göttingen

Modul B.Mat.0041: Einführung in die Fachdidaktik Mathematik für das lehramtbezogene Profil am Beispiel der Sammlung Mathematischer Modelle und Instrumente

English title: Introduction to mathematics education for the course track "teacher education" on the example of the collection of mathematical models and instruments

6 C 4 SWS

Lernziele/Kompetenzen:

Lernziele:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit Grundwissen im Bereich "Fachdidaktik Mathematik" vertraut. Sie

- verfügen über mathematikdidaktisches Grundlagenwissen über lerntheoretische und -psychologische Hintergründe und beziehen diese auf das Lernen und Lehren von Mathematik;
- nennen fachdidaktisch relevante Ergebnisse der empirischen Bildungs- und Unterrichtsforschung;
- strukturieren Lehr-Lern-Prozesse mit den Konzepten fundamentaler Ideen und Grundvorstellungen;
- erkennen Grundvorstellungen und fundamentale Ideen für den Mathematikunterricht der Sekundarstufe I in Situationen des Mathematikunterrichts;
- nutzen mathematikdidaktische Befunde und Konzepte sowie konkrete Ansätze zu typischen, insbesondere heterogenen Lernsituationen, um diese Lernsituationen im Mathematikunterricht zu verstehen;
- verwenden bereichsspezifische Argumentationsweisen, Problemlösestrategien und Mathematisierungsmuster sowie typische Lernperspektiven im Stoffgebiet (insbesondere Vorstellungen, Fehlermuster, mathematische und sprachsensible Verständnishürden, Anknüpfungspunkte);
- kennen zentrale didaktische Konzepte und Materialien für den Unterricht eines Stoffgebietes und analysieren damit insbesondere heterogene Lernsituationen sowie das Fördern und Fordern im Mathematikunterricht.
- nutzen Möglichkeiten und Wirkung neuer Medien sowie von Objekten mathematischer Sammlungen;
- nutzen verschiedene Repräsentationsformen insbesondere mit Hilfe von Exponaten der "Sammlung mathematischer Modelle und Instrumente";
- verwenden vertieftes Grundlagenwissen am Beispiel der Elementargeometrie in der Ebene für die Didaktik der Geometrie.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls haben die Studierenden grundlegende Kompetenzen im Bereich "Fachdidaktik Mathematik" erworben, insbesondere:

- Vermittlungskompetenz mathematischer Kenntnisse sowie fach- und schulbezogener Fähigkeiten;
- Fähigkeit zur stoffdidaktischen, sachbezogenen Analyse mathematischer Lerninhalte;

Arbeitsaufwand:

Präsenzzeit: 56 Stunden Selbststudium: 124 Stunden

- Verständnis exemplarisch ausgewählter mathematikdidaktischer Forschungsmethoden und Untersuchungsdesigns;
- erste diagnostische Kompetenzen, insbesondere zu typischen Fehlvorstellungen.

Lehrveranstaltung: Vorlesung (2 SWS) mit Übungen (2 SWS) Inhalte: Vorlesung "Einführung in die Mathematikdidaktik" oder "Einführung in die Mathematikdidaktik am Beispiel der Sammlung mathematischer Modelle und Instrumente" Prüfung: Klausur (90 Minuten) Prüfungsvorleistungen:

Prüfungsanforderungen: Fach- und schulbezogene Grundlagen und Methoden der Fachdidaktik Mathematik am Beispiel einer Stoffdidaktik

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Mat.0011, B.Mat.0012
Sprache: Deutsch	Modulverantwortliche[r]: Studiengangsbeauftragte/r
Angebotshäufigkeit: jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 4 - 6
Maximale Studierendenzahl: nicht begrenzt	

Bemerkungen:

Dozent/in: Lehrpersonen des Mathematischen Instituts

B.Mat.0041.Ue: Erfolgreiche Teilnahme an den Übungen

Georg-August-Universität Göttingen Modul B.Mat.0720: Mathematische Anwendersysteme (Grundlagen) English title: Mathematical application software

Lernziele/Kompetenzen:

Lernziele:

Nach erfolgreichem Absolvieren des Moduls haben die Studierenden

- · die Grundprinzipien der Programmierung erfasst;
- die Befähigung zum sicheren Umgang mit einer Programmiersprache im mathematische Kontext erworben;
- Erfahrungen mit elementaren Algorithmen und deren Anwendungen gesammelt.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls haben die Studierenden grundlegende Kenntnisse über eine Programmiersprache im mathematischen Kontext erworben. Sie

- haben die Fähigkeit erworben, Algorithmen in einer Programmiersprache umzusetzen;
- haben gelernt die Programmiersprache zum Lösen von Algebraischen Problemen zu nutzen (Computeralgebra CAS).

Arbeitsaufwand:

Präsenzzeit:

28 Stunden

Selbststudium:

62 Stunden

Lehrveranstaltung: Blockkurs	2 SWS
Inhalte:	
Blockkurs bestehend aus Vorlesung, Übungen und Praktikum, z.B. "Einführung in	
Python und Computeralgebra".	
Prüfung: Klausur (90 Minuten)	3 C

Prüfungsanforderungen:

Grundkenntnisse in einer Programmiersprache mit Fokus auf mathematisch orientierte Anwendung und Hintergrund.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Mat.0011, B.Mat.0012
Sprache: Deutsch	Modulverantwortliche[r]: Studiendekan/in Mathematik
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: Bachelor: 1 - 6; Master: 1 - 4
Maximale Studierendenzahl: nicht begrenzt	

Bemerkungen:

Dozent/in: Lehrpersonen des Instituts für Numerische und Angewandte Mathematik.

• Ausschluss: Studierende, die das Modul B.Mat.0721 bereits erfolgreich absolviert haben, dürfen das Modul B.Mat.0720 nicht absolvieren.

Georg-August-Universität Göttingen Modul B.Mat.1300: Numerische lineare Algebra English title: Numerical linear algebra

Lernziele/Kompetenzen:

Lernziele:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit Grundbegriffen und Methoden im Schwerpunkt "Numerische und Angewandte Mathematik" vertraut. Sie

- gehen sicher mit Matrix- und Vektornormen um;
- formulieren für verschiedenartige Fixpunktgleichungen einen geeigneten Rahmen, der die Anwendung des Banachschen Fixpunktsatzes erlaubt;
- beurteilen Vor- und Nachteile von direkten und iterativen Lösungsverfahren für lineare Gleichungssysteme, insbesondere von Krylovraumverfahren, und analysieren die Konvergenz iterativer Verfahren;
- lösen nichtlineare Gleichungssysteme mit dem Newtonverfahren und analysieren dessen Konvergenz;
- formulieren quadratische Ausgleichsprobleme zur Schätzung von Parametern aus Daten und lösen sie numerisch;
- berechnen numerisch Eigenwerte und -vektoren von Matrizen.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls haben die Studierenden grundlegende Kompetenzen im Schwerpunkt "Numerische und Angewandte Mathematik" erworben. Sie sind in der Lage,

- grundlegende Verfahren zur numerischen Lösung von mathematischen Problemen anzuwenden:
- numerische Algorithmen in einer Programmiersprache oder einem Anwendersystem zu implementieren;
- Grundprinzipien der Konvergenzanalysis numerischer Algorithmen zu nutzen.

Arbeitsaufwand:

Präsenzzeit: 84 Stunden Selbststudium:

186 Stunden

Lehrveranstaltung: Numerische Mathematik I (Vorlesung)		4 SWS	
Lehrveranstaltung: Numerische Mathematik I - Übung (Übung)		2 SWS	
Prüfung: Klausur (120 Minuten) Prüfungsvorleistungen: B.Mat.1300.Ue: Erreichen von mindestens 50% d zweimaliges Vorrechnen von Lösungen in den Üb	9 C		
Prüfungsanforderungen: Nachweis der Grundkenntnisse der numerischen und angewandten Mathematik			
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Mat.0021, B.Mat.0022		
Sprache:	Modulverantwortliche[r]:		

Deutsch	Studiengangsbeauftragte/r
Angebotshäufigkeit: jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester: 3 - 5
Maximale Studierendenzahl: nicht begrenzt	

- Dozent/in: Lehrpersonen des Instituts für Numerische und Angewandte Mathematik
- Universitätsweites Schlüsselkompetenzangebot; als solches nicht verwendbar für Studierende im Zwei-Fächer-Bachelor Studiengang mit Fach Mathematik, Studiengang Master of Education mit Fach Mathematik, Bachelor/Master-Studiengang Mathematik und Promotionsstudiengang Mathematical Sciences.

Georg-August-Universität Göttingen

Modul B.Mat.1400: Maß- und Wahrscheinlichkeitstheorie

English title: Measure and probability theory

9 C 6 SWS

Lernziele/Kompetenzen:

Lernziele:

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden mit den Grundbegriffen und Methoden der Maßtheorie sowie auch der Wahrscheinlichkeitstheorie vertraut, die die Grundlage des Schwerpunkts "Mathematische Stochastik" bilden. Sie

- modellieren diskrete Wahrscheinlichkeitsräume, beherrschen die damit verbundene Kombinatorik sowie den Einsatz von Unabhängigkeit und bedingten Wahrscheinlichkeiten;
- kennen die wichtigsten Verteilungen von Zufallsvariablen;
- verstehen grundlegende Eigenschaften sowie Existenz und Eindeutigkeitsaussagen von Maßen;
- gehen sicher mit allgemeinen Maß-Integralen um, insbesondere mit dem Lebesque-Integral;
- · kennen sich mit Lp-Räumen und Produkträumen aus;
- formulieren wahrscheinlichkeitstheoretische Aussagen mit Wahrscheinlichkeitsräumen, Wahrscheinlichkeitsmaßen und Zufallsvariablen;
- rechnen und modellieren mit stetigen und mehrdimensionalen Verteilungen;
- beschreiben Wahrscheinlichkeitsmaße mit Hilfe von Verteilungsfunktionen bzw.
 Dichten;
- · verstehen und nutzen das Konzept der Unabhängigkeit;
- berechenen Erwartungswerte von Funktionen von Zufallsvariablen;
- verstehen die verschiedenen stochastischen Konvergenzbegriffe und ihre Beziehungen;
- · kennen charakteristische Funktionen und deren Anwendungen;
- besitzen Grundkenntnisse über bedingte Wahrscheinlichkeiten und bedingte Erwartungswerte;
- verwenden das schwache Gesetz der großen Zahlen und den zentralen Grenzwertsatz:
- kennen einfache stochastische Prozesse wie z.B. Markov-Ketten.

Kompetenzen:

Nach erfolgreichem Absolvieren des Moduls haben die Studierenden grundlegende Kompetenzen im Schwerpunkt "Mathematische Stochastik" erworben. Sie sind in der Lage,

- Maßräume und Maß-Integrale anzuwenden;
- stochastische Denkweisen einzusetzen und einfache stochastische Modelle zu formulieren:
- · stochastische Modelle mathematisch zu analysieren;
- die wichtigsten Verteilungen zu verstehen und anzuwenden;
- stochastische Abschätzungen mit Hilfe von Wahrscheinlichkeitsgesetzen

Arbeitsaufwand:

Präsenzzeit: 84 Stunden Selbststudium: 186 Stunden

durchzuführen;				
grundlegende Grenzwertsätze der Wahrscheinlichkeitstheorie zu verwenden.				
Lehrveranstaltung: Maß- und Wahrscheinlichkeitstheorie (Vorlesung)			4 SWS	
Lehrveranstaltung: Maß- und Wahrsche	einlichkeitstheorie - Übung (Übung)	2 SW	2 SWS	
Prüfung: Klausur (120 Minuten)		9 C	9 C	
Prüfungsvorleistungen:				
B.Mat.1400.Ue: Erreichen von mindestens	s 50% der Übungspunkte und			
zweimaliges Vorrechnen von Lösungen in den Übungen				
Prüfungsanforderungen: Nachweis von Grundkenntnissen in diskreter Stochastik sowie Maß- und Wahrscheinlichkeitstheorie				
Zugangsvoraussetzungen:	Empfohlene Vorkenntnis	se:		
keine	B.Mat.0021, B.Mat.0022			
Sprache:	Modulverantwortliche[r]:	Modulverantwortliche[r]:		
Deutsch	Studiengangsbeauftragte/i	Studiengangsbeauftragte/r		
Angebotshäufigkeit:	Dauer:			
jedes Wintersemester	1 Semester			
Wiederholbarkeit:	Empfohlenes Fachsemes	ster:		
zweimalig	3 - 5			
Maximale Studierendenzahl:				
nicht begrenzt				
Bemerkungen:		-		

Dozent/in: Lehrpersonen des Instituts für Mathematische Stochastik